Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293199951> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4293199951 abstract "Dynamic modeling of body organs has become an elementary part of modern digital human modeling, where advanced biomedical models incorporate biomechanical behavior of tissues down to the cell level. While the biomechanical response of organs to impact and trauma has traditionally been considered an important aspect in developing safety-related models such as for vehicle crash simulation, organ behavior is now also reflected in models used for medical purposes, such as the simulation of breathing or cardiovascular circulation. All human body cells have in vivo nonlinear viscoelastic properties. Moreover, body tissue is composed of cells wrapped in an extracellular matrix (ECM). Body tissue in vivo nonlinear viscoelastic properties depend on its function in an organ system, which directly affects the tissue viscoelasticity modulus. For advanced perfusion or fluid passage simulation, we propose to represent the nonlinear viscoelastic behavior of the body tissue in a solid boundary condition using the moving deforming mesh (MDM) method. This shape modeling method can be used in segmentation to generate meshes of prescribed cell area. It considers how the viscoelastic perfusion wall transient fluid flow responds to the pressure pulse from human organ systems such as the lung or heart. The method also allows consideration of the change in the volume fraction of the ECM constituents, which may result from aging or disease such as cancer and lead to a changed viscous modulus (loss modulus) and elastic modulus (storage modulus) of organ tissue. In this study, we use the MDM method to examine two organ geometries from the respiratory and cardiovascular systems. Although the simulation effort using this method is more time-consuming, the simulation outcomes are expected to be in better accordance with the real organs when compared to simulation results using other computational fluid dynamics methods, where perfusion wall behavior is considered to be rigid. We propose that more accurate and personalized computational modeling will lead to predictive surgical planning, enabling an optimum choice of the most favorable reformative technique when considering specific patient conditions." @default.
- W4293199951 created "2022-08-27" @default.
- W4293199951 creator A5001926516 @default.
- W4293199951 creator A5056413814 @default.
- W4293199951 creator A5061591466 @default.
- W4293199951 creator A5083747975 @default.
- W4293199951 date "2022-08-23" @default.
- W4293199951 modified "2023-10-18" @default.
- W4293199951 title "Moving deforming mesh modeling of human organ systems" @default.
- W4293199951 doi "https://doi.org/10.17077/dhm.31776" @default.
- W4293199951 hasPublicationYear "2022" @default.
- W4293199951 type Work @default.
- W4293199951 citedByCount "1" @default.
- W4293199951 countsByYear W42931999512023 @default.
- W4293199951 crossrefType "proceedings-article" @default.
- W4293199951 hasAuthorship W4293199951A5001926516 @default.
- W4293199951 hasAuthorship W4293199951A5056413814 @default.
- W4293199951 hasAuthorship W4293199951A5061591466 @default.
- W4293199951 hasAuthorship W4293199951A5083747975 @default.
- W4293199951 hasBestOaLocation W42931999511 @default.
- W4293199951 hasConcept C121332964 @default.
- W4293199951 hasConcept C136229726 @default.
- W4293199951 hasConcept C159985019 @default.
- W4293199951 hasConcept C186541917 @default.
- W4293199951 hasConcept C191204318 @default.
- W4293199951 hasConcept C192562407 @default.
- W4293199951 hasConcept C521977710 @default.
- W4293199951 hasConcept C57879066 @default.
- W4293199951 hasConcept C7055690 @default.
- W4293199951 hasConcept C71924100 @default.
- W4293199951 hasConceptScore W4293199951C121332964 @default.
- W4293199951 hasConceptScore W4293199951C136229726 @default.
- W4293199951 hasConceptScore W4293199951C159985019 @default.
- W4293199951 hasConceptScore W4293199951C186541917 @default.
- W4293199951 hasConceptScore W4293199951C191204318 @default.
- W4293199951 hasConceptScore W4293199951C192562407 @default.
- W4293199951 hasConceptScore W4293199951C521977710 @default.
- W4293199951 hasConceptScore W4293199951C57879066 @default.
- W4293199951 hasConceptScore W4293199951C7055690 @default.
- W4293199951 hasConceptScore W4293199951C71924100 @default.
- W4293199951 hasLocation W42931999511 @default.
- W4293199951 hasOpenAccess W4293199951 @default.
- W4293199951 hasPrimaryLocation W42931999511 @default.
- W4293199951 hasRelatedWork W2002216623 @default.
- W4293199951 hasRelatedWork W2009190663 @default.
- W4293199951 hasRelatedWork W2014730744 @default.
- W4293199951 hasRelatedWork W2031230628 @default.
- W4293199951 hasRelatedWork W2088251424 @default.
- W4293199951 hasRelatedWork W2103644702 @default.
- W4293199951 hasRelatedWork W2133077677 @default.
- W4293199951 hasRelatedWork W2165227586 @default.
- W4293199951 hasRelatedWork W2778304221 @default.
- W4293199951 hasRelatedWork W4292809191 @default.
- W4293199951 isParatext "false" @default.
- W4293199951 isRetracted "false" @default.
- W4293199951 workType "article" @default.