Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293203602> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4293203602 endingPage "132" @default.
- W4293203602 startingPage "117" @default.
- W4293203602 abstract "AbstractAs the coronavirus (COVID-19) grows its impact from China, expanding its catchment into surrounding regions and other countries, increased national and international measures are being taken to contain the outbreak. This perspective paper is written to capture and analyze the various mental state health issues being perceived via emotional analysis of Twitter data during the COVID-19 virus outbreak from a single nation further spread of to the whole world. A data-driven approach with higher accuracy as here can be very useful for a proactive response from the government and citizens. In the proposed work, tweets during the COVID situation have been collected and their sentiments are explored using BERT (Bidirectional Encoder Representation from Transformer) algorithm. BERT is the algorithm that takes text as input, and the trained basis on the epochs (number of passes performed). The performance parameters are computed such as accuracy, precision, recall, and F-measure. Further, the proposed approach is compared with other existing algorithms such as Naïve Bayes (NB), support vector machine (SVM), and logistic regression (LR). The performance measures indicate that the BERT algorithm outperforms all other existing algorithms with an accuracy of 86.7% as compared to 67.3%, 63.4%, and 61.2% with Naïve Bayes, support vector machine, and logistic regression, respectively. The government and other medical health agencies can use the outcomes of this paper for implementing and taking preventative measures to maintain the good mental and physical health of medical staff.KeywordsCOVIDTwitter sentiment analysisNovel coronavirusBERTPrediction algorithmMetrics" @default.
- W4293203602 created "2022-08-27" @default.
- W4293203602 creator A5019540812 @default.
- W4293203602 creator A5024833891 @default.
- W4293203602 creator A5025967090 @default.
- W4293203602 date "2022-01-01" @default.
- W4293203602 modified "2023-09-24" @default.
- W4293203602 title "Sentimental Analysis of Tweets During COVID-19 Pandemic: BERT Algorithm" @default.
- W4293203602 cites W1569507287 @default.
- W4293203602 cites W1683269307 @default.
- W4293203602 cites W2105543408 @default.
- W4293203602 cites W2114524997 @default.
- W4293203602 cites W2325440334 @default.
- W4293203602 cites W2593572939 @default.
- W4293203602 cites W2786411768 @default.
- W4293203602 cites W2899088390 @default.
- W4293203602 cites W2979826702 @default.
- W4293203602 cites W3010634539 @default.
- W4293203602 cites W3011996584 @default.
- W4293203602 cites W3017058166 @default.
- W4293203602 cites W3018735259 @default.
- W4293203602 cites W3025352604 @default.
- W4293203602 cites W3030109869 @default.
- W4293203602 cites W3037942277 @default.
- W4293203602 cites W3039554467 @default.
- W4293203602 cites W3047326222 @default.
- W4293203602 doi "https://doi.org/10.1007/978-981-16-8774-7_11" @default.
- W4293203602 hasPublicationYear "2022" @default.
- W4293203602 type Work @default.
- W4293203602 citedByCount "0" @default.
- W4293203602 crossrefType "book-chapter" @default.
- W4293203602 hasAuthorship W4293203602A5019540812 @default.
- W4293203602 hasAuthorship W4293203602A5024833891 @default.
- W4293203602 hasAuthorship W4293203602A5025967090 @default.
- W4293203602 hasConcept C11413529 @default.
- W4293203602 hasConcept C142724271 @default.
- W4293203602 hasConcept C154945302 @default.
- W4293203602 hasConcept C2779134260 @default.
- W4293203602 hasConcept C3008058167 @default.
- W4293203602 hasConcept C41008148 @default.
- W4293203602 hasConcept C524204448 @default.
- W4293203602 hasConcept C71924100 @default.
- W4293203602 hasConcept C89623803 @default.
- W4293203602 hasConceptScore W4293203602C11413529 @default.
- W4293203602 hasConceptScore W4293203602C142724271 @default.
- W4293203602 hasConceptScore W4293203602C154945302 @default.
- W4293203602 hasConceptScore W4293203602C2779134260 @default.
- W4293203602 hasConceptScore W4293203602C3008058167 @default.
- W4293203602 hasConceptScore W4293203602C41008148 @default.
- W4293203602 hasConceptScore W4293203602C524204448 @default.
- W4293203602 hasConceptScore W4293203602C71924100 @default.
- W4293203602 hasConceptScore W4293203602C89623803 @default.
- W4293203602 hasLocation W42932036021 @default.
- W4293203602 hasOpenAccess W4293203602 @default.
- W4293203602 hasPrimaryLocation W42932036021 @default.
- W4293203602 hasRelatedWork W2341987741 @default.
- W4293203602 hasRelatedWork W2539163683 @default.
- W4293203602 hasRelatedWork W2766608955 @default.
- W4293203602 hasRelatedWork W3014664599 @default.
- W4293203602 hasRelatedWork W3214973351 @default.
- W4293203602 hasRelatedWork W4205958290 @default.
- W4293203602 hasRelatedWork W4214820172 @default.
- W4293203602 hasRelatedWork W4226182728 @default.
- W4293203602 hasRelatedWork W4281846282 @default.
- W4293203602 hasRelatedWork W4283169603 @default.
- W4293203602 isParatext "false" @default.
- W4293203602 isRetracted "false" @default.
- W4293203602 workType "book-chapter" @default.