Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293203864> ?p ?o ?g. }
- W4293203864 endingPage "12" @default.
- W4293203864 startingPage "1" @default.
- W4293203864 abstract "Sports dance is a competition project and a kind of sports, with the characteristics of being smooth, generous, leisurely, and comfortable, dance steps, smooth movements, and flowing clouds, and it can give full play to the indoor space. In the light of the new era, sports dance is also playing an increasingly important role. Through the time series data and feature analysis of dance sports movements through machine learning, the internal information is mined to find the trends and laws. Machine learning in the era of big data is widely used in research as the main tool for data analysis and mining. The key difficulty of data mining has always been time series data. Machine learning refers to a method of using the resulting data in a computer to derive a certain model and then using this model to make predictions. The core is “using algorithms to parse data, learn from it, and then make decisions or predictions about new data.”" @default.
- W4293203864 created "2022-08-27" @default.
- W4293203864 creator A5066426790 @default.
- W4293203864 creator A5079509672 @default.
- W4293203864 date "2022-08-24" @default.
- W4293203864 modified "2023-10-16" @default.
- W4293203864 title "Time Series Data Prediction and Feature Analysis of Sports Dance Movements Based on Machine Learning" @default.
- W4293203864 cites W1570989169 @default.
- W4293203864 cites W1988790447 @default.
- W4293203864 cites W1994410331 @default.
- W4293203864 cites W2000061362 @default.
- W4293203864 cites W2025392565 @default.
- W4293203864 cites W2045313701 @default.
- W4293203864 cites W2062067490 @default.
- W4293203864 cites W2064675550 @default.
- W4293203864 cites W2079735306 @default.
- W4293203864 cites W2087494330 @default.
- W4293203864 cites W2099085654 @default.
- W4293203864 cites W2101926813 @default.
- W4293203864 cites W2103212315 @default.
- W4293203864 cites W2112796928 @default.
- W4293203864 cites W2124193432 @default.
- W4293203864 cites W2148534289 @default.
- W4293203864 cites W2148830179 @default.
- W4293203864 cites W2150355110 @default.
- W4293203864 cites W2152761983 @default.
- W4293203864 cites W2154506590 @default.
- W4293203864 cites W2158724449 @default.
- W4293203864 cites W2595609330 @default.
- W4293203864 cites W2604919407 @default.
- W4293203864 cites W2790886041 @default.
- W4293203864 cites W2919115771 @default.
- W4293203864 cites W892735016 @default.
- W4293203864 doi "https://doi.org/10.1155/2022/5611829" @default.
- W4293203864 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36059406" @default.
- W4293203864 hasPublicationYear "2022" @default.
- W4293203864 type Work @default.
- W4293203864 citedByCount "0" @default.
- W4293203864 crossrefType "journal-article" @default.
- W4293203864 hasAuthorship W4293203864A5066426790 @default.
- W4293203864 hasAuthorship W4293203864A5079509672 @default.
- W4293203864 hasBestOaLocation W42932038641 @default.
- W4293203864 hasConcept C119857082 @default.
- W4293203864 hasConcept C124101348 @default.
- W4293203864 hasConcept C124952713 @default.
- W4293203864 hasConcept C138885662 @default.
- W4293203864 hasConcept C142362112 @default.
- W4293203864 hasConcept C143724316 @default.
- W4293203864 hasConcept C147446459 @default.
- W4293203864 hasConcept C151406439 @default.
- W4293203864 hasConcept C151730666 @default.
- W4293203864 hasConcept C154945302 @default.
- W4293203864 hasConcept C186644900 @default.
- W4293203864 hasConcept C2164484 @default.
- W4293203864 hasConcept C2522767166 @default.
- W4293203864 hasConcept C26517878 @default.
- W4293203864 hasConcept C2776401178 @default.
- W4293203864 hasConcept C38652104 @default.
- W4293203864 hasConcept C41008148 @default.
- W4293203864 hasConcept C41895202 @default.
- W4293203864 hasConcept C75684735 @default.
- W4293203864 hasConcept C76155785 @default.
- W4293203864 hasConcept C86803240 @default.
- W4293203864 hasConceptScore W4293203864C119857082 @default.
- W4293203864 hasConceptScore W4293203864C124101348 @default.
- W4293203864 hasConceptScore W4293203864C124952713 @default.
- W4293203864 hasConceptScore W4293203864C138885662 @default.
- W4293203864 hasConceptScore W4293203864C142362112 @default.
- W4293203864 hasConceptScore W4293203864C143724316 @default.
- W4293203864 hasConceptScore W4293203864C147446459 @default.
- W4293203864 hasConceptScore W4293203864C151406439 @default.
- W4293203864 hasConceptScore W4293203864C151730666 @default.
- W4293203864 hasConceptScore W4293203864C154945302 @default.
- W4293203864 hasConceptScore W4293203864C186644900 @default.
- W4293203864 hasConceptScore W4293203864C2164484 @default.
- W4293203864 hasConceptScore W4293203864C2522767166 @default.
- W4293203864 hasConceptScore W4293203864C26517878 @default.
- W4293203864 hasConceptScore W4293203864C2776401178 @default.
- W4293203864 hasConceptScore W4293203864C38652104 @default.
- W4293203864 hasConceptScore W4293203864C41008148 @default.
- W4293203864 hasConceptScore W4293203864C41895202 @default.
- W4293203864 hasConceptScore W4293203864C75684735 @default.
- W4293203864 hasConceptScore W4293203864C76155785 @default.
- W4293203864 hasConceptScore W4293203864C86803240 @default.
- W4293203864 hasFunder F4320322191 @default.
- W4293203864 hasLocation W42932038641 @default.
- W4293203864 hasLocation W42932038642 @default.
- W4293203864 hasLocation W42932038643 @default.
- W4293203864 hasOpenAccess W4293203864 @default.
- W4293203864 hasPrimaryLocation W42932038641 @default.
- W4293203864 hasRelatedWork W1996408511 @default.
- W4293203864 hasRelatedWork W2150798635 @default.
- W4293203864 hasRelatedWork W2577361510 @default.
- W4293203864 hasRelatedWork W2608950002 @default.
- W4293203864 hasRelatedWork W2965318499 @default.
- W4293203864 hasRelatedWork W3014300295 @default.
- W4293203864 hasRelatedWork W3158877728 @default.
- W4293203864 hasRelatedWork W3200786215 @default.