Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293208434> ?p ?o ?g. }
- W4293208434 endingPage "6348" @default.
- W4293208434 startingPage "6336" @default.
- W4293208434 abstract "As a rapidly developing novel electromagnetic imaging technique, microwave-induced thermoacoustic tomography (MITAT) has found many applications and attracted tremendous research interest. Using sparse data to reconstruct images is very challenging for MITAT. This work proposes a novel deep-learning-enabled MITAT (DL-MITAT) modality to address the sparse data reconstruction problem and applies it in breast cancer detection. The applied network is a domain transform network called feature projection network (FPNet) + ResU-Net. Detailed structure and implementation method of the network is described. We conduct both simulation and <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>ex vivo</i> experiments with breast phantoms to test the validity of the DL-MITAT approach. The obtained images given by the trained network exhibit much better quality and have much less artifacts than those obtained by a traditional imaging algorithm. We show that only 15 measurements can still reliably recover an image of the breast tumor for both full-view and limited-view configurations in <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>ex vivo</i> experiments. We also provide detailed discussions on the capability and limitations of the proposed scheme. This work presents a new paradigm for MITAT based on sparse data and can be applied in all related applications of MITAT, including biomedical imaging, nondestructive testing, and therapy guidance." @default.
- W4293208434 created "2022-08-27" @default.
- W4293208434 creator A5010205157 @default.
- W4293208434 creator A5023648924 @default.
- W4293208434 creator A5038389052 @default.
- W4293208434 creator A5069101887 @default.
- W4293208434 creator A5080132178 @default.
- W4293208434 creator A5080202995 @default.
- W4293208434 date "2022-08-01" @default.
- W4293208434 modified "2023-09-27" @default.
- W4293208434 title "Deep-Learning-Enabled Microwave-Induced Thermoacoustic Tomography Based on Sparse Data for Breast Cancer Detection" @default.
- W4293208434 cites W1965670825 @default.
- W4293208434 cites W1983863443 @default.
- W4293208434 cites W1984906764 @default.
- W4293208434 cites W1994815835 @default.
- W4293208434 cites W2027347827 @default.
- W4293208434 cites W2030959745 @default.
- W4293208434 cites W2045255249 @default.
- W4293208434 cites W2056157354 @default.
- W4293208434 cites W2073898807 @default.
- W4293208434 cites W2087632337 @default.
- W4293208434 cites W2088835271 @default.
- W4293208434 cites W2096679572 @default.
- W4293208434 cites W2126167067 @default.
- W4293208434 cites W2133425463 @default.
- W4293208434 cites W2136647076 @default.
- W4293208434 cites W2145620827 @default.
- W4293208434 cites W2147354348 @default.
- W4293208434 cites W2162473564 @default.
- W4293208434 cites W2194775991 @default.
- W4293208434 cites W2284245616 @default.
- W4293208434 cites W2310992461 @default.
- W4293208434 cites W2751563926 @default.
- W4293208434 cites W2796256498 @default.
- W4293208434 cites W2801585709 @default.
- W4293208434 cites W2811161107 @default.
- W4293208434 cites W2897881395 @default.
- W4293208434 cites W2903382468 @default.
- W4293208434 cites W2949076167 @default.
- W4293208434 cites W2962994363 @default.
- W4293208434 cites W2964215175 @default.
- W4293208434 cites W2974799347 @default.
- W4293208434 cites W2991907672 @default.
- W4293208434 cites W3000353626 @default.
- W4293208434 cites W3005984068 @default.
- W4293208434 cites W3028538765 @default.
- W4293208434 cites W3033137211 @default.
- W4293208434 cites W3036455158 @default.
- W4293208434 cites W3042203856 @default.
- W4293208434 cites W3046203717 @default.
- W4293208434 cites W3134651670 @default.
- W4293208434 cites W3135162477 @default.
- W4293208434 cites W3165863000 @default.
- W4293208434 cites W3174954537 @default.
- W4293208434 cites W3189016191 @default.
- W4293208434 cites W3198538671 @default.
- W4293208434 cites W4247119078 @default.
- W4293208434 cites W4250955649 @default.
- W4293208434 doi "https://doi.org/10.1109/tap.2022.3159680" @default.
- W4293208434 hasPublicationYear "2022" @default.
- W4293208434 type Work @default.
- W4293208434 citedByCount "11" @default.
- W4293208434 countsByYear W42932084342022 @default.
- W4293208434 countsByYear W42932084342023 @default.
- W4293208434 crossrefType "journal-article" @default.
- W4293208434 hasAuthorship W4293208434A5010205157 @default.
- W4293208434 hasAuthorship W4293208434A5023648924 @default.
- W4293208434 hasAuthorship W4293208434A5038389052 @default.
- W4293208434 hasAuthorship W4293208434A5069101887 @default.
- W4293208434 hasAuthorship W4293208434A5080132178 @default.
- W4293208434 hasAuthorship W4293208434A5080202995 @default.
- W4293208434 hasConcept C108583219 @default.
- W4293208434 hasConcept C11413529 @default.
- W4293208434 hasConcept C119857082 @default.
- W4293208434 hasConcept C121608353 @default.
- W4293208434 hasConcept C126322002 @default.
- W4293208434 hasConcept C141379421 @default.
- W4293208434 hasConcept C153180895 @default.
- W4293208434 hasConcept C154945302 @default.
- W4293208434 hasConcept C2777432617 @default.
- W4293208434 hasConcept C2779885931 @default.
- W4293208434 hasConcept C2780472235 @default.
- W4293208434 hasConcept C41008148 @default.
- W4293208434 hasConcept C44838205 @default.
- W4293208434 hasConcept C530470458 @default.
- W4293208434 hasConcept C57493831 @default.
- W4293208434 hasConcept C71924100 @default.
- W4293208434 hasConcept C76155785 @default.
- W4293208434 hasConceptScore W4293208434C108583219 @default.
- W4293208434 hasConceptScore W4293208434C11413529 @default.
- W4293208434 hasConceptScore W4293208434C119857082 @default.
- W4293208434 hasConceptScore W4293208434C121608353 @default.
- W4293208434 hasConceptScore W4293208434C126322002 @default.
- W4293208434 hasConceptScore W4293208434C141379421 @default.
- W4293208434 hasConceptScore W4293208434C153180895 @default.
- W4293208434 hasConceptScore W4293208434C154945302 @default.
- W4293208434 hasConceptScore W4293208434C2777432617 @default.
- W4293208434 hasConceptScore W4293208434C2779885931 @default.