Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293211776> ?p ?o ?g. }
- W4293211776 endingPage "22377" @default.
- W4293211776 startingPage "22367" @default.
- W4293211776 abstract "Recent technological advancements in computer vision algorithms and data acquisition devices have greatly facilitated the research and applications of deep learning-based traffic object recognition from Light Detection and Ranging (LiDAR) data. The majority of existing methodologies applied deep learning (DL)-based techniques, especially Convolutional Neural Networks (CNNs), for vehicle detection and tracking on autonomous driving datasets. Nevertheless, fewer studies were focused on DL-based vehicle detection using roadside LiDAR data, partially due to the lack of publicly available roadside LiDAR datasets for network training and testing. This paper develops a novel framework based on CNNs and LiDAR data for automated vehicle detection. It leverages the domain knowledge of CNNs trained on large-scale autonomous driving datasets for vehicle detection from roadside LiDAR data. In the experimental study, roadside LiDAR data were collected at a road intersection in Reno, Nevada, U.S. Meanwhile, a CNN architecture was proposed to detect vehicles from LiDAR data through 3D bounding boxes. The proposed CNN was modified from the established PointPillars network by adding dense connections to the convolutional layers to achieve more comprehensive feature extraction. Three CNNs, including the proposed CNN, PointPillars, and YOLOv4, were trained and tested on PandaSet, a publicly available large-scale autonomous driving LiDAR dataset. Subsequently, the trained CNNs were reused for vehicle detection from the captured roadside LiDAR data. The experimental results demonstrated that the proposed CNN outperformed the others in the testing metrics. All three networks showed good performance on vehicle detection from the captured roadside LiDAR data." @default.
- W4293211776 created "2022-08-27" @default.
- W4293211776 creator A5015509703 @default.
- W4293211776 creator A5017611542 @default.
- W4293211776 creator A5022704321 @default.
- W4293211776 creator A5029018923 @default.
- W4293211776 creator A5078176055 @default.
- W4293211776 date "2022-11-01" @default.
- W4293211776 modified "2023-10-18" @default.
- W4293211776 title "Leveraging Deep Convolutional Neural Networks Pre-Trained on Autonomous Driving Data for Vehicle Detection From Roadside LiDAR Data" @default.
- W4293211776 cites W2001943318 @default.
- W4293211776 cites W2074794092 @default.
- W4293211776 cites W2084116216 @default.
- W4293211776 cites W2108033050 @default.
- W4293211776 cites W2109255472 @default.
- W4293211776 cites W2134576786 @default.
- W4293211776 cites W2150066425 @default.
- W4293211776 cites W2158698691 @default.
- W4293211776 cites W2805899829 @default.
- W4293211776 cites W2897529137 @default.
- W4293211776 cites W2909746114 @default.
- W4293211776 cites W2942778630 @default.
- W4293211776 cites W2954996726 @default.
- W4293211776 cites W2962766617 @default.
- W4293211776 cites W2962912109 @default.
- W4293211776 cites W2963446712 @default.
- W4293211776 cites W2963857746 @default.
- W4293211776 cites W2968296999 @default.
- W4293211776 cites W2970673508 @default.
- W4293211776 cites W2975262648 @default.
- W4293211776 cites W2991216808 @default.
- W4293211776 cites W3008115128 @default.
- W4293211776 cites W3008128075 @default.
- W4293211776 cites W3024586432 @default.
- W4293211776 cites W3035172746 @default.
- W4293211776 cites W3035574168 @default.
- W4293211776 cites W3036934267 @default.
- W4293211776 cites W3042011474 @default.
- W4293211776 cites W3043357436 @default.
- W4293211776 cites W3080980548 @default.
- W4293211776 cites W3088821986 @default.
- W4293211776 cites W3142427620 @default.
- W4293211776 cites W3163389686 @default.
- W4293211776 doi "https://doi.org/10.1109/tits.2022.3183889" @default.
- W4293211776 hasPublicationYear "2022" @default.
- W4293211776 type Work @default.
- W4293211776 citedByCount "6" @default.
- W4293211776 countsByYear W42932117762022 @default.
- W4293211776 countsByYear W42932117762023 @default.
- W4293211776 crossrefType "journal-article" @default.
- W4293211776 hasAuthorship W4293211776A5015509703 @default.
- W4293211776 hasAuthorship W4293211776A5017611542 @default.
- W4293211776 hasAuthorship W4293211776A5022704321 @default.
- W4293211776 hasAuthorship W4293211776A5029018923 @default.
- W4293211776 hasAuthorship W4293211776A5078176055 @default.
- W4293211776 hasConcept C108583219 @default.
- W4293211776 hasConcept C115051666 @default.
- W4293211776 hasConcept C127413603 @default.
- W4293211776 hasConcept C153180895 @default.
- W4293211776 hasConcept C154945302 @default.
- W4293211776 hasConcept C205649164 @default.
- W4293211776 hasConcept C22212356 @default.
- W4293211776 hasConcept C2776151529 @default.
- W4293211776 hasConcept C31972630 @default.
- W4293211776 hasConcept C41008148 @default.
- W4293211776 hasConcept C51399673 @default.
- W4293211776 hasConcept C52622490 @default.
- W4293211776 hasConcept C62649853 @default.
- W4293211776 hasConcept C64543145 @default.
- W4293211776 hasConcept C76155785 @default.
- W4293211776 hasConcept C81363708 @default.
- W4293211776 hasConceptScore W4293211776C108583219 @default.
- W4293211776 hasConceptScore W4293211776C115051666 @default.
- W4293211776 hasConceptScore W4293211776C127413603 @default.
- W4293211776 hasConceptScore W4293211776C153180895 @default.
- W4293211776 hasConceptScore W4293211776C154945302 @default.
- W4293211776 hasConceptScore W4293211776C205649164 @default.
- W4293211776 hasConceptScore W4293211776C22212356 @default.
- W4293211776 hasConceptScore W4293211776C2776151529 @default.
- W4293211776 hasConceptScore W4293211776C31972630 @default.
- W4293211776 hasConceptScore W4293211776C41008148 @default.
- W4293211776 hasConceptScore W4293211776C51399673 @default.
- W4293211776 hasConceptScore W4293211776C52622490 @default.
- W4293211776 hasConceptScore W4293211776C62649853 @default.
- W4293211776 hasConceptScore W4293211776C64543145 @default.
- W4293211776 hasConceptScore W4293211776C76155785 @default.
- W4293211776 hasConceptScore W4293211776C81363708 @default.
- W4293211776 hasFunder F4320306076 @default.
- W4293211776 hasIssue "11" @default.
- W4293211776 hasLocation W42932117761 @default.
- W4293211776 hasOpenAccess W4293211776 @default.
- W4293211776 hasPrimaryLocation W42932117761 @default.
- W4293211776 hasRelatedWork W2059299633 @default.
- W4293211776 hasRelatedWork W2279398222 @default.
- W4293211776 hasRelatedWork W2732542196 @default.
- W4293211776 hasRelatedWork W2738221750 @default.
- W4293211776 hasRelatedWork W2773120646 @default.
- W4293211776 hasRelatedWork W3011074480 @default.