Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293213366> ?p ?o ?g. }
- W4293213366 endingPage "1470" @default.
- W4293213366 startingPage "1457" @default.
- W4293213366 abstract "Crop protection is the prime hindrance to food security. Plant diseases destroy the overall quality and quantity of agricultural products. Grape is an important fruit and a major source of vitamin C nutrients. The automatic decision-making system plays a paramount role in agricultural informatics. This paper aims to detect the diseases in grape leaves using convolutional capsule networks. The capsule network is a promising neural network in deep learning. This network uses a group of neurons as capsules and effectively represents spatial information of features. The novelty of the proposed work relies on the addition of convolutional layers before the primary caps layer, which indirectly decreases the number of capsules and speeds up the dynamic routing process. The proposed method has experimented with augmented and non-augmented datasets. It effectively detects the diseases of grape leaves with an accuracy of 99.12%. The method's performance is compared with state-of-the-art deep learning methods and produces reliable results." @default.
- W4293213366 created "2022-08-27" @default.
- W4293213366 creator A5002886927 @default.
- W4293213366 creator A5018321766 @default.
- W4293213366 creator A5034365041 @default.
- W4293213366 creator A5060546615 @default.
- W4293213366 creator A5067782776 @default.
- W4293213366 creator A5075655741 @default.
- W4293213366 date "2022-08-25" @default.
- W4293213366 modified "2023-10-13" @default.
- W4293213366 title "Image-based disease classification in grape leaves using convolutional capsule network" @default.
- W4293213366 cites W1978331315 @default.
- W4293213366 cites W2057106128 @default.
- W4293213366 cites W2176950688 @default.
- W4293213366 cites W2519116646 @default.
- W4293213366 cites W2561572938 @default.
- W4293213366 cites W2625892824 @default.
- W4293213366 cites W2731165298 @default.
- W4293213366 cites W2733343268 @default.
- W4293213366 cites W2753403518 @default.
- W4293213366 cites W2776705292 @default.
- W4293213366 cites W2807820559 @default.
- W4293213366 cites W2889543275 @default.
- W4293213366 cites W2889943009 @default.
- W4293213366 cites W2890491569 @default.
- W4293213366 cites W2891667148 @default.
- W4293213366 cites W2895994027 @default.
- W4293213366 cites W2898381489 @default.
- W4293213366 cites W2906494726 @default.
- W4293213366 cites W2911433502 @default.
- W4293213366 cites W2911968856 @default.
- W4293213366 cites W2919254004 @default.
- W4293213366 cites W2919352650 @default.
- W4293213366 cites W2920018594 @default.
- W4293213366 cites W2921698554 @default.
- W4293213366 cites W2938959907 @default.
- W4293213366 cites W2944947651 @default.
- W4293213366 cites W2963384288 @default.
- W4293213366 cites W2963820222 @default.
- W4293213366 cites W2979668754 @default.
- W4293213366 cites W2980069994 @default.
- W4293213366 cites W3003259175 @default.
- W4293213366 cites W3005050494 @default.
- W4293213366 cites W3006296545 @default.
- W4293213366 cites W3033097971 @default.
- W4293213366 cites W3043813914 @default.
- W4293213366 cites W3086039674 @default.
- W4293213366 cites W3115279044 @default.
- W4293213366 cites W3176139635 @default.
- W4293213366 cites W3195963910 @default.
- W4293213366 cites W3212737115 @default.
- W4293213366 cites W4206338051 @default.
- W4293213366 cites W4206990632 @default.
- W4293213366 cites W4213370913 @default.
- W4293213366 doi "https://doi.org/10.1007/s00500-022-07446-5" @default.
- W4293213366 hasPublicationYear "2022" @default.
- W4293213366 type Work @default.
- W4293213366 citedByCount "9" @default.
- W4293213366 countsByYear W42932133662022 @default.
- W4293213366 countsByYear W42932133662023 @default.
- W4293213366 crossrefType "journal-article" @default.
- W4293213366 hasAuthorship W4293213366A5002886927 @default.
- W4293213366 hasAuthorship W4293213366A5018321766 @default.
- W4293213366 hasAuthorship W4293213366A5034365041 @default.
- W4293213366 hasAuthorship W4293213366A5060546615 @default.
- W4293213366 hasAuthorship W4293213366A5067782776 @default.
- W4293213366 hasAuthorship W4293213366A5075655741 @default.
- W4293213366 hasBestOaLocation W42932133662 @default.
- W4293213366 hasConcept C108583219 @default.
- W4293213366 hasConcept C138885662 @default.
- W4293213366 hasConcept C153180895 @default.
- W4293213366 hasConcept C154945302 @default.
- W4293213366 hasConcept C27206212 @default.
- W4293213366 hasConcept C2778738651 @default.
- W4293213366 hasConcept C41008148 @default.
- W4293213366 hasConcept C81363708 @default.
- W4293213366 hasConceptScore W4293213366C108583219 @default.
- W4293213366 hasConceptScore W4293213366C138885662 @default.
- W4293213366 hasConceptScore W4293213366C153180895 @default.
- W4293213366 hasConceptScore W4293213366C154945302 @default.
- W4293213366 hasConceptScore W4293213366C27206212 @default.
- W4293213366 hasConceptScore W4293213366C2778738651 @default.
- W4293213366 hasConceptScore W4293213366C41008148 @default.
- W4293213366 hasConceptScore W4293213366C81363708 @default.
- W4293213366 hasIssue "3" @default.
- W4293213366 hasLocation W42932133661 @default.
- W4293213366 hasLocation W42932133662 @default.
- W4293213366 hasOpenAccess W4293213366 @default.
- W4293213366 hasPrimaryLocation W42932133661 @default.
- W4293213366 hasRelatedWork W2731899572 @default.
- W4293213366 hasRelatedWork W2999805992 @default.
- W4293213366 hasRelatedWork W3011074480 @default.
- W4293213366 hasRelatedWork W3116150086 @default.
- W4293213366 hasRelatedWork W3133861977 @default.
- W4293213366 hasRelatedWork W3192840557 @default.
- W4293213366 hasRelatedWork W4200173597 @default.
- W4293213366 hasRelatedWork W4291897433 @default.
- W4293213366 hasRelatedWork W4312417841 @default.