Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293214483> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4293214483 endingPage "4142" @default.
- W4293214483 startingPage "4142" @default.
- W4293214483 abstract "Evapotranspiration (ET) at weekly and monthly time scales is often needed for various applications. When using remote sensing (RS)-based models, this can be achieved either by averaging all the required input variables to the intended time scale and simulating ET using models (input aggregation), or by estimating daily ET from the models and averaging to weekly or monthly ET (output aggregation). It is not clear if both these aggregation approaches yield the same outcome when using RS-based models for the estimation of ET. Another issue in obtaining ET at longer time scales is the lack of enough satellite observations to estimate ET with reasonable accuracy. This study aimed to compare the input and output aggregation approaches to obtain ET at weekly and monthly time scales using three RS ET models, namely, Priestley–Taylor Jet Propulsion Lab (PT-JPL), Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE), and Surface Temperature Initiated Closure (STIC) models. The study was conducted using in situ data over six sites of different agro-climatic conditions in India, Tunisia, and France. The results indicate that the input aggregation provided relatively better results for monthly and weekly ET values than the output aggregation, having a lower RMSE (1–40%). Further, it was found that at least seven to eight satellite observations per month are required to obtain reliable ET estimate when using RS-based models." @default.
- W4293214483 created "2022-08-27" @default.
- W4293214483 creator A5020895351 @default.
- W4293214483 creator A5027171976 @default.
- W4293214483 creator A5041258974 @default.
- W4293214483 creator A5042586674 @default.
- W4293214483 creator A5077442056 @default.
- W4293214483 date "2022-08-23" @default.
- W4293214483 modified "2023-10-14" @default.
- W4293214483 title "Modeling Evapotranspiration at Larger Temporal Scales: Effects of Temporal Aggregation and Data Gaps" @default.
- W4293214483 cites W1815401404 @default.
- W4293214483 cites W1996390301 @default.
- W4293214483 cites W2041570083 @default.
- W4293214483 cites W2076328809 @default.
- W4293214483 cites W2082869502 @default.
- W4293214483 cites W2088500306 @default.
- W4293214483 cites W2091750668 @default.
- W4293214483 cites W2110845818 @default.
- W4293214483 cites W2123134454 @default.
- W4293214483 cites W2126349297 @default.
- W4293214483 cites W2129531078 @default.
- W4293214483 cites W2129859781 @default.
- W4293214483 cites W2158711600 @default.
- W4293214483 cites W2171542838 @default.
- W4293214483 cites W2172396214 @default.
- W4293214483 cites W2275133766 @default.
- W4293214483 cites W2568019095 @default.
- W4293214483 cites W2595433512 @default.
- W4293214483 cites W2921058112 @default.
- W4293214483 cites W2952978280 @default.
- W4293214483 cites W2981779424 @default.
- W4293214483 cites W2995687014 @default.
- W4293214483 cites W3014501446 @default.
- W4293214483 cites W3135851475 @default.
- W4293214483 cites W3138219035 @default.
- W4293214483 cites W3178981539 @default.
- W4293214483 cites W3195730516 @default.
- W4293214483 doi "https://doi.org/10.3390/rs14174142" @default.
- W4293214483 hasPublicationYear "2022" @default.
- W4293214483 type Work @default.
- W4293214483 citedByCount "0" @default.
- W4293214483 crossrefType "journal-article" @default.
- W4293214483 hasAuthorship W4293214483A5020895351 @default.
- W4293214483 hasAuthorship W4293214483A5027171976 @default.
- W4293214483 hasAuthorship W4293214483A5041258974 @default.
- W4293214483 hasAuthorship W4293214483A5042586674 @default.
- W4293214483 hasAuthorship W4293214483A5077442056 @default.
- W4293214483 hasBestOaLocation W42932144831 @default.
- W4293214483 hasConcept C105795698 @default.
- W4293214483 hasConcept C127313418 @default.
- W4293214483 hasConcept C153294291 @default.
- W4293214483 hasConcept C176783924 @default.
- W4293214483 hasConcept C18903297 @default.
- W4293214483 hasConcept C205649164 @default.
- W4293214483 hasConcept C2778755073 @default.
- W4293214483 hasConcept C33923547 @default.
- W4293214483 hasConcept C39432304 @default.
- W4293214483 hasConcept C58640448 @default.
- W4293214483 hasConcept C86803240 @default.
- W4293214483 hasConcept C91586092 @default.
- W4293214483 hasConceptScore W4293214483C105795698 @default.
- W4293214483 hasConceptScore W4293214483C127313418 @default.
- W4293214483 hasConceptScore W4293214483C153294291 @default.
- W4293214483 hasConceptScore W4293214483C176783924 @default.
- W4293214483 hasConceptScore W4293214483C18903297 @default.
- W4293214483 hasConceptScore W4293214483C205649164 @default.
- W4293214483 hasConceptScore W4293214483C2778755073 @default.
- W4293214483 hasConceptScore W4293214483C33923547 @default.
- W4293214483 hasConceptScore W4293214483C39432304 @default.
- W4293214483 hasConceptScore W4293214483C58640448 @default.
- W4293214483 hasConceptScore W4293214483C86803240 @default.
- W4293214483 hasConceptScore W4293214483C91586092 @default.
- W4293214483 hasIssue "17" @default.
- W4293214483 hasLocation W42932144831 @default.
- W4293214483 hasLocation W42932144832 @default.
- W4293214483 hasOpenAccess W4293214483 @default.
- W4293214483 hasPrimaryLocation W42932144831 @default.
- W4293214483 hasRelatedWork W2018625055 @default.
- W4293214483 hasRelatedWork W2035697161 @default.
- W4293214483 hasRelatedWork W2055135361 @default.
- W4293214483 hasRelatedWork W2080778260 @default.
- W4293214483 hasRelatedWork W2121058899 @default.
- W4293214483 hasRelatedWork W2381363492 @default.
- W4293214483 hasRelatedWork W2424470468 @default.
- W4293214483 hasRelatedWork W2883179159 @default.
- W4293214483 hasRelatedWork W3018935317 @default.
- W4293214483 hasRelatedWork W4385628416 @default.
- W4293214483 hasVolume "14" @default.
- W4293214483 isParatext "false" @default.
- W4293214483 isRetracted "false" @default.
- W4293214483 workType "article" @default.