Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293217070> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4293217070 endingPage "118667" @default.
- W4293217070 startingPage "118667" @default.
- W4293217070 abstract "Companies and organizations often use manuals and guidelines to communicate and execute operational decisions. Decision Model and Notation (DMN) models can be used to model and automate these decisions. Modeling a decision from a textual source, however, is a time intensive and complex activity hence a need for shorter modeling times. This paper studies how NLP deep learning techniques can extract decision models from text faster. In this paper, we study and evaluate an automatic sentence classifier and a decision dependency extractor using NLP deep learning models (BERT and Bi-LSTM-CRF). A large labeled and tagged dataset was collected from real use cases to train these models. We conclude that BERT can be used for the (semi)-automatic extraction of decision models from text." @default.
- W4293217070 created "2022-08-27" @default.
- W4293217070 creator A5002850770 @default.
- W4293217070 creator A5076581659 @default.
- W4293217070 creator A5087087021 @default.
- W4293217070 date "2023-01-01" @default.
- W4293217070 modified "2023-09-25" @default.
- W4293217070 title "Extracting Decision Model and Notation models from text using deep learning techniques" @default.
- W4293217070 cites W2117130368 @default.
- W4293217070 cites W2126034021 @default.
- W4293217070 cites W2149956050 @default.
- W4293217070 cites W2162340487 @default.
- W4293217070 cites W2250539671 @default.
- W4293217070 cites W2282821441 @default.
- W4293217070 cites W2772515592 @default.
- W4293217070 cites W2884001105 @default.
- W4293217070 cites W2980113592 @default.
- W4293217070 cites W2982528027 @default.
- W4293217070 cites W2989473642 @default.
- W4293217070 cites W3003276437 @default.
- W4293217070 cites W3019166713 @default.
- W4293217070 cites W3021523115 @default.
- W4293217070 cites W3097511358 @default.
- W4293217070 cites W3099740706 @default.
- W4293217070 cites W3103454825 @default.
- W4293217070 cites W3122288931 @default.
- W4293217070 doi "https://doi.org/10.1016/j.eswa.2022.118667" @default.
- W4293217070 hasPublicationYear "2023" @default.
- W4293217070 type Work @default.
- W4293217070 citedByCount "1" @default.
- W4293217070 crossrefType "journal-article" @default.
- W4293217070 hasAuthorship W4293217070A5002850770 @default.
- W4293217070 hasAuthorship W4293217070A5076581659 @default.
- W4293217070 hasAuthorship W4293217070A5087087021 @default.
- W4293217070 hasConcept C108583219 @default.
- W4293217070 hasConcept C117978034 @default.
- W4293217070 hasConcept C119857082 @default.
- W4293217070 hasConcept C127413603 @default.
- W4293217070 hasConcept C154945302 @default.
- W4293217070 hasConcept C19768560 @default.
- W4293217070 hasConcept C204321447 @default.
- W4293217070 hasConcept C21880701 @default.
- W4293217070 hasConcept C2777530160 @default.
- W4293217070 hasConcept C33923547 @default.
- W4293217070 hasConcept C41008148 @default.
- W4293217070 hasConcept C45357846 @default.
- W4293217070 hasConcept C59594135 @default.
- W4293217070 hasConcept C94375191 @default.
- W4293217070 hasConcept C95623464 @default.
- W4293217070 hasConceptScore W4293217070C108583219 @default.
- W4293217070 hasConceptScore W4293217070C117978034 @default.
- W4293217070 hasConceptScore W4293217070C119857082 @default.
- W4293217070 hasConceptScore W4293217070C127413603 @default.
- W4293217070 hasConceptScore W4293217070C154945302 @default.
- W4293217070 hasConceptScore W4293217070C19768560 @default.
- W4293217070 hasConceptScore W4293217070C204321447 @default.
- W4293217070 hasConceptScore W4293217070C21880701 @default.
- W4293217070 hasConceptScore W4293217070C2777530160 @default.
- W4293217070 hasConceptScore W4293217070C33923547 @default.
- W4293217070 hasConceptScore W4293217070C41008148 @default.
- W4293217070 hasConceptScore W4293217070C45357846 @default.
- W4293217070 hasConceptScore W4293217070C59594135 @default.
- W4293217070 hasConceptScore W4293217070C94375191 @default.
- W4293217070 hasConceptScore W4293217070C95623464 @default.
- W4293217070 hasFunder F4320321730 @default.
- W4293217070 hasFunder F4320322308 @default.
- W4293217070 hasLocation W42932170701 @default.
- W4293217070 hasOpenAccess W4293217070 @default.
- W4293217070 hasPrimaryLocation W42932170701 @default.
- W4293217070 hasRelatedWork W3014300295 @default.
- W4293217070 hasRelatedWork W3136979370 @default.
- W4293217070 hasRelatedWork W3164822677 @default.
- W4293217070 hasRelatedWork W4223943233 @default.
- W4293217070 hasRelatedWork W4225161397 @default.
- W4293217070 hasRelatedWork W4312200629 @default.
- W4293217070 hasRelatedWork W4360585206 @default.
- W4293217070 hasRelatedWork W4364306694 @default.
- W4293217070 hasRelatedWork W4380075502 @default.
- W4293217070 hasRelatedWork W4380086463 @default.
- W4293217070 hasVolume "211" @default.
- W4293217070 isParatext "false" @default.
- W4293217070 isRetracted "false" @default.
- W4293217070 workType "article" @default.