Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293221948> ?p ?o ?g. }
- W4293221948 endingPage "3455" @default.
- W4293221948 startingPage "3455" @default.
- W4293221948 abstract "Corrugated pipes offer both higher stiffness and higher flexibility while simultaneously requiring less material than rigid pipes. Production rates of corrugated pipes have therefore increased significantly in recent years. Due to rising commodity prices, pipe manufacturers have been driven to produce corrugated pipes of high quality with reduced material input. To the best of our knowledge, corrugated pipe geometry and wall thickness distribution significantly influence pipe properties. Essential factors in optimizing wall thickness distribution include adaptation of the mold block geometry and structure optimization. To achieve these goals, a conventional approach would typically require numerous iterations over various pipe geometries, several mold block geometries, and then fabrication of pipes to be tested experimentally-an approach which is very time-consuming and costly. To address this issue, we developed multi-dimensional mathematical models that predict the wall thickness distribution in corrugated pipes as functions of the mold geometry by using symbolic regression based on genetic programming (GP). First, the blow molding problem was transformed into a dimensionless representation. Then, a screening study was performed to identify the most significant influencing parameters, which were subsequently varied within wide ranges as a basis for a comprehensive, numerically driven parametric design study. The data set obtained was used as input for data-driven modeling to derive novel regression models for predicting wall thickness distribution. Finally, model accuracy was confirmed by means of an error analysis that evaluated various statistical metrics. With our models, wall thickness distribution can now be predicted and subsequently used for structural analysis, thus enabling digital mold block design and optimizing the wall thickness distribution." @default.
- W4293221948 created "2022-08-27" @default.
- W4293221948 creator A5001256517 @default.
- W4293221948 creator A5024515723 @default.
- W4293221948 creator A5035877246 @default.
- W4293221948 creator A5082974463 @default.
- W4293221948 date "2022-08-24" @default.
- W4293221948 modified "2023-10-14" @default.
- W4293221948 title "Multi-Dimensional Regression Models for Predicting the Wall Thickness Distribution of Corrugated Pipes" @default.
- W4293221948 cites W1975054103 @default.
- W4293221948 cites W2013638824 @default.
- W4293221948 cites W2014181722 @default.
- W4293221948 cites W2026844082 @default.
- W4293221948 cites W2026871298 @default.
- W4293221948 cites W2037492521 @default.
- W4293221948 cites W2067767175 @default.
- W4293221948 cites W2072348623 @default.
- W4293221948 cites W2083368963 @default.
- W4293221948 cites W2084330850 @default.
- W4293221948 cites W2121721614 @default.
- W4293221948 cites W2752325598 @default.
- W4293221948 cites W2792515042 @default.
- W4293221948 cites W2888421853 @default.
- W4293221948 cites W2892110053 @default.
- W4293221948 cites W2912149177 @default.
- W4293221948 cites W2918495689 @default.
- W4293221948 cites W2937242005 @default.
- W4293221948 cites W3185670831 @default.
- W4293221948 cites W3201444203 @default.
- W4293221948 doi "https://doi.org/10.3390/polym14173455" @default.
- W4293221948 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36080529" @default.
- W4293221948 hasPublicationYear "2022" @default.
- W4293221948 type Work @default.
- W4293221948 citedByCount "1" @default.
- W4293221948 countsByYear W42932219482023 @default.
- W4293221948 crossrefType "journal-article" @default.
- W4293221948 hasAuthorship W4293221948A5001256517 @default.
- W4293221948 hasAuthorship W4293221948A5024515723 @default.
- W4293221948 hasAuthorship W4293221948A5035877246 @default.
- W4293221948 hasAuthorship W4293221948A5082974463 @default.
- W4293221948 hasBestOaLocation W42932219481 @default.
- W4293221948 hasConcept C105795698 @default.
- W4293221948 hasConcept C117251300 @default.
- W4293221948 hasConcept C119857082 @default.
- W4293221948 hasConcept C121332964 @default.
- W4293221948 hasConcept C127413603 @default.
- W4293221948 hasConcept C152877465 @default.
- W4293221948 hasConcept C159985019 @default.
- W4293221948 hasConcept C192562407 @default.
- W4293221948 hasConcept C24872484 @default.
- W4293221948 hasConcept C2524010 @default.
- W4293221948 hasConcept C2777210771 @default.
- W4293221948 hasConcept C2779372316 @default.
- W4293221948 hasConcept C2780566776 @default.
- W4293221948 hasConcept C33923547 @default.
- W4293221948 hasConcept C41008148 @default.
- W4293221948 hasConcept C57879066 @default.
- W4293221948 hasConcept C66938386 @default.
- W4293221948 hasConceptScore W4293221948C105795698 @default.
- W4293221948 hasConceptScore W4293221948C117251300 @default.
- W4293221948 hasConceptScore W4293221948C119857082 @default.
- W4293221948 hasConceptScore W4293221948C121332964 @default.
- W4293221948 hasConceptScore W4293221948C127413603 @default.
- W4293221948 hasConceptScore W4293221948C152877465 @default.
- W4293221948 hasConceptScore W4293221948C159985019 @default.
- W4293221948 hasConceptScore W4293221948C192562407 @default.
- W4293221948 hasConceptScore W4293221948C24872484 @default.
- W4293221948 hasConceptScore W4293221948C2524010 @default.
- W4293221948 hasConceptScore W4293221948C2777210771 @default.
- W4293221948 hasConceptScore W4293221948C2779372316 @default.
- W4293221948 hasConceptScore W4293221948C2780566776 @default.
- W4293221948 hasConceptScore W4293221948C33923547 @default.
- W4293221948 hasConceptScore W4293221948C41008148 @default.
- W4293221948 hasConceptScore W4293221948C57879066 @default.
- W4293221948 hasConceptScore W4293221948C66938386 @default.
- W4293221948 hasFunder F4320323031 @default.
- W4293221948 hasIssue "17" @default.
- W4293221948 hasLocation W42932219481 @default.
- W4293221948 hasLocation W42932219482 @default.
- W4293221948 hasLocation W42932219483 @default.
- W4293221948 hasLocation W42932219484 @default.
- W4293221948 hasLocation W42932219485 @default.
- W4293221948 hasLocation W42932219486 @default.
- W4293221948 hasOpenAccess W4293221948 @default.
- W4293221948 hasPrimaryLocation W42932219481 @default.
- W4293221948 hasRelatedWork W1515377448 @default.
- W4293221948 hasRelatedWork W1679164670 @default.
- W4293221948 hasRelatedWork W1970287945 @default.
- W4293221948 hasRelatedWork W2020711795 @default.
- W4293221948 hasRelatedWork W2363812971 @default.
- W4293221948 hasRelatedWork W2365599414 @default.
- W4293221948 hasRelatedWork W2376018681 @default.
- W4293221948 hasRelatedWork W2378609167 @default.
- W4293221948 hasRelatedWork W2522714860 @default.
- W4293221948 hasRelatedWork W2804303429 @default.
- W4293221948 hasVolume "14" @default.
- W4293221948 isParatext "false" @default.
- W4293221948 isRetracted "false" @default.