Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293221984> ?p ?o ?g. }
- W4293221984 endingPage "19" @default.
- W4293221984 startingPage "1" @default.
- W4293221984 abstract "Background. In crowded crowd images, traditional detection models often have the problems of inaccurate multiscale target count and low recall rate. Methods. In order to solve the above two problems, this paper proposes an MLP-CNN model, which combined with FPN feature pyramid can fuse the feature map of low-resolution and high-resolution semantic information with less computation and can effectively solve the problem of inaccurate head count of multiscale people. MLP-CNN “mid-term” fusion model can effectively fuse the features of RGB head image and RGB-Mask image. With the help of head RGB-Mask annotation and adaptive Gaussian kernel regression, the enhanced density map can be generated, which can effectively solve the problem of low recall of head detection. Results. MLP-CNN model was applied in ShanghaiTech and UCF_ CC_ 50 and UCF-QNRF. The test results show that the error of the method proposed in this paper has been significantly improved, and the recall rate can reach 79.91%. Conclusion. MLP-CNN model not only improves the accuracy of population counting in density map regression, but also improves the detection rate of multiscale population head targets." @default.
- W4293221984 created "2022-08-27" @default.
- W4293221984 creator A5009149021 @default.
- W4293221984 creator A5019365638 @default.
- W4293221984 creator A5071363803 @default.
- W4293221984 creator A5091133072 @default.
- W4293221984 date "2022-08-24" @default.
- W4293221984 modified "2023-10-14" @default.
- W4293221984 title "Enhancement of Local Crowd Location and Count: Multiscale Counting Guided by Head RGB-Mask" @default.
- W4293221984 cites W1857560888 @default.
- W4293221984 cites W2028292253 @default.
- W4293221984 cites W2463631526 @default.
- W4293221984 cites W2545132779 @default.
- W4293221984 cites W2729018917 @default.
- W4293221984 cites W2790051527 @default.
- W4293221984 cites W2798781811 @default.
- W4293221984 cites W2804446681 @default.
- W4293221984 cites W2891528343 @default.
- W4293221984 cites W2907589687 @default.
- W4293221984 cites W2945582636 @default.
- W4293221984 cites W2957982620 @default.
- W4293221984 cites W2962766044 @default.
- W4293221984 cites W2962832028 @default.
- W4293221984 cites W2963838390 @default.
- W4293221984 cites W2964203052 @default.
- W4293221984 cites W2964264515 @default.
- W4293221984 cites W2965247173 @default.
- W4293221984 cites W2968848584 @default.
- W4293221984 cites W2976749699 @default.
- W4293221984 cites W2982535248 @default.
- W4293221984 cites W2997996590 @default.
- W4293221984 cites W3005695990 @default.
- W4293221984 cites W3007175960 @default.
- W4293221984 cites W3013473206 @default.
- W4293221984 cites W3025630494 @default.
- W4293221984 cites W3033888387 @default.
- W4293221984 cites W3048083751 @default.
- W4293221984 cites W3090474196 @default.
- W4293221984 cites W3096362535 @default.
- W4293221984 cites W3123090226 @default.
- W4293221984 cites W3125372245 @default.
- W4293221984 cites W3132588545 @default.
- W4293221984 cites W3152836081 @default.
- W4293221984 cites W3154170247 @default.
- W4293221984 cites W3163033647 @default.
- W4293221984 cites W3176458063 @default.
- W4293221984 cites W3201776758 @default.
- W4293221984 cites W3209325172 @default.
- W4293221984 cites W4214637271 @default.
- W4293221984 cites W4231179262 @default.
- W4293221984 cites W4301409532 @default.
- W4293221984 doi "https://doi.org/10.1155/2022/5708807" @default.
- W4293221984 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36059394" @default.
- W4293221984 hasPublicationYear "2022" @default.
- W4293221984 type Work @default.
- W4293221984 citedByCount "0" @default.
- W4293221984 crossrefType "journal-article" @default.
- W4293221984 hasAuthorship W4293221984A5009149021 @default.
- W4293221984 hasAuthorship W4293221984A5019365638 @default.
- W4293221984 hasAuthorship W4293221984A5071363803 @default.
- W4293221984 hasAuthorship W4293221984A5091133072 @default.
- W4293221984 hasBestOaLocation W42932219841 @default.
- W4293221984 hasConcept C119599485 @default.
- W4293221984 hasConcept C127413603 @default.
- W4293221984 hasConcept C138885662 @default.
- W4293221984 hasConcept C141353440 @default.
- W4293221984 hasConcept C142575187 @default.
- W4293221984 hasConcept C144024400 @default.
- W4293221984 hasConcept C149923435 @default.
- W4293221984 hasConcept C153180895 @default.
- W4293221984 hasConcept C154945302 @default.
- W4293221984 hasConcept C2524010 @default.
- W4293221984 hasConcept C2776401178 @default.
- W4293221984 hasConcept C2908647359 @default.
- W4293221984 hasConcept C31972630 @default.
- W4293221984 hasConcept C33923547 @default.
- W4293221984 hasConcept C40969351 @default.
- W4293221984 hasConcept C41008148 @default.
- W4293221984 hasConcept C41895202 @default.
- W4293221984 hasConcept C52622490 @default.
- W4293221984 hasConcept C81363708 @default.
- W4293221984 hasConcept C82990744 @default.
- W4293221984 hasConceptScore W4293221984C119599485 @default.
- W4293221984 hasConceptScore W4293221984C127413603 @default.
- W4293221984 hasConceptScore W4293221984C138885662 @default.
- W4293221984 hasConceptScore W4293221984C141353440 @default.
- W4293221984 hasConceptScore W4293221984C142575187 @default.
- W4293221984 hasConceptScore W4293221984C144024400 @default.
- W4293221984 hasConceptScore W4293221984C149923435 @default.
- W4293221984 hasConceptScore W4293221984C153180895 @default.
- W4293221984 hasConceptScore W4293221984C154945302 @default.
- W4293221984 hasConceptScore W4293221984C2524010 @default.
- W4293221984 hasConceptScore W4293221984C2776401178 @default.
- W4293221984 hasConceptScore W4293221984C2908647359 @default.
- W4293221984 hasConceptScore W4293221984C31972630 @default.
- W4293221984 hasConceptScore W4293221984C33923547 @default.
- W4293221984 hasConceptScore W4293221984C40969351 @default.
- W4293221984 hasConceptScore W4293221984C41008148 @default.