Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293224364> ?p ?o ?g. }
- W4293224364 abstract "Abstract Small samples sizes and loss of up to 50-70% of sequencing data during the data denoising step of preprocessing can limit the statistical power of fresh produce microbiome analyses and prevent detection of important bacterial species associated with produce contamination or quality reduction. Here, we explored an alignment-free analysis strategy using k-mer hashes to identify DNA signatures predictive of produce safety and produce quality, and compared it against the amplicon sequence variant (ASV) strategy that uses a typical denoising step. Random forests (RF)-based classifiers for fresh produce safety and quality using 7-mer hash datasets had significantly higher classification accuracy than those using the ASV datasets. We also demonstrated that the proposed combination of integrating multiple datasets and leveraging an alignment-free 7-mer hash strategy leads to better classification performance for fresh produce safety and quality. Results generated from this study lay the foundation for future studies that wish and need to incorporate and/or compare different microbiome sequencing datasets for the application of machine learning in the area of microbial safety and quality of food." @default.
- W4293224364 created "2022-08-27" @default.
- W4293224364 creator A5001578828 @default.
- W4293224364 creator A5021149986 @default.
- W4293224364 creator A5025037155 @default.
- W4293224364 date "2022-08-25" @default.
- W4293224364 modified "2023-10-16" @default.
- W4293224364 title "Alignment-free microbiome-based classification of fresh produce safety and quality" @default.
- W4293224364 cites W1513616610 @default.
- W4293224364 cites W1587982649 @default.
- W4293224364 cites W1596717185 @default.
- W4293224364 cites W1602160603 @default.
- W4293224364 cites W1825746529 @default.
- W4293224364 cites W1963710004 @default.
- W4293224364 cites W1994088389 @default.
- W4293224364 cites W1994806872 @default.
- W4293224364 cites W2009828044 @default.
- W4293224364 cites W2010504895 @default.
- W4293224364 cites W2012939480 @default.
- W4293224364 cites W2015441865 @default.
- W4293224364 cites W2034285706 @default.
- W4293224364 cites W2036897871 @default.
- W4293224364 cites W2044530452 @default.
- W4293224364 cites W2068485133 @default.
- W4293224364 cites W2092133193 @default.
- W4293224364 cites W2108281900 @default.
- W4293224364 cites W2110434479 @default.
- W4293224364 cites W2119776664 @default.
- W4293224364 cites W2122555405 @default.
- W4293224364 cites W2124005542 @default.
- W4293224364 cites W2144739183 @default.
- W4293224364 cites W2154026962 @default.
- W4293224364 cites W2159259525 @default.
- W4293224364 cites W2169353806 @default.
- W4293224364 cites W2170343251 @default.
- W4293224364 cites W2401404581 @default.
- W4293224364 cites W2537904225 @default.
- W4293224364 cites W2592367925 @default.
- W4293224364 cites W2768567748 @default.
- W4293224364 cites W2778180762 @default.
- W4293224364 cites W2781868120 @default.
- W4293224364 cites W2783062395 @default.
- W4293224364 cites W2802279707 @default.
- W4293224364 cites W2806157403 @default.
- W4293224364 cites W2807194798 @default.
- W4293224364 cites W2884274420 @default.
- W4293224364 cites W2896321500 @default.
- W4293224364 cites W2897603717 @default.
- W4293224364 cites W2912586227 @default.
- W4293224364 cites W2950150251 @default.
- W4293224364 cites W2955167895 @default.
- W4293224364 cites W2955701240 @default.
- W4293224364 cites W2956029470 @default.
- W4293224364 cites W2963276645 @default.
- W4293224364 cites W2966030721 @default.
- W4293224364 cites W2969551234 @default.
- W4293224364 cites W2985630388 @default.
- W4293224364 cites W2999191369 @default.
- W4293224364 cites W2999369378 @default.
- W4293224364 cites W3000289599 @default.
- W4293224364 cites W3043062835 @default.
- W4293224364 cites W3109410920 @default.
- W4293224364 cites W3115999643 @default.
- W4293224364 cites W3120821366 @default.
- W4293224364 cites W3216224456 @default.
- W4293224364 cites W4200281538 @default.
- W4293224364 cites W4213075468 @default.
- W4293224364 cites W4220802965 @default.
- W4293224364 cites W4223623137 @default.
- W4293224364 cites W4238530616 @default.
- W4293224364 cites W840856483 @default.
- W4293224364 cites W927563535 @default.
- W4293224364 doi "https://doi.org/10.1101/2022.08.25.505309" @default.
- W4293224364 hasPublicationYear "2022" @default.
- W4293224364 type Work @default.
- W4293224364 citedByCount "0" @default.
- W4293224364 crossrefType "posted-content" @default.
- W4293224364 hasAuthorship W4293224364A5001578828 @default.
- W4293224364 hasAuthorship W4293224364A5021149986 @default.
- W4293224364 hasAuthorship W4293224364A5025037155 @default.
- W4293224364 hasBestOaLocation W42932243641 @default.
- W4293224364 hasConcept C104317684 @default.
- W4293224364 hasConcept C111472728 @default.
- W4293224364 hasConcept C119857082 @default.
- W4293224364 hasConcept C124101348 @default.
- W4293224364 hasConcept C138885662 @default.
- W4293224364 hasConcept C143121216 @default.
- W4293224364 hasConcept C153180895 @default.
- W4293224364 hasConcept C154945302 @default.
- W4293224364 hasConcept C169258074 @default.
- W4293224364 hasConcept C2779530757 @default.
- W4293224364 hasConcept C31903555 @default.
- W4293224364 hasConcept C34736171 @default.
- W4293224364 hasConcept C38652104 @default.
- W4293224364 hasConcept C41008148 @default.
- W4293224364 hasConcept C49105822 @default.
- W4293224364 hasConcept C516717267 @default.
- W4293224364 hasConcept C54355233 @default.
- W4293224364 hasConcept C60644358 @default.
- W4293224364 hasConcept C8185291 @default.