Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293224461> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4293224461 endingPage "10" @default.
- W4293224461 startingPage "1" @default.
- W4293224461 abstract "Primary research to detect duplicate question pairs within community-based question answering systems is based on datasets made of English questions only. This research put forward a solution to the problem of duplicate question detection by matching semantically identical questions in transliterated bilingual data. Deep learning has been implemented to analyze informal languages like Hinglish which is a bilingual mix of Hindi and English on Community Question Answering (CQA) platforms to identify duplicacy in questions. The proposed model works in two sequential modules. First module is a language transliteration module which converts input questions into a mono-language text. The next module takes the transliterated text where a hybrid deep learning model which is implemented using multiple layers is used to detect duplicate questions in the mono-lingual data. The similarity between the question pairs is done utilizing this hybrid model combining a Siamese neural network with identical capsule network as the subnetworks and a decision tree classifier. Manhattan distance function is used with the Siamese network for computing the similarity between questions. The proposed model has been validated on 150 pairs of questions which were scrapped from various social media platforms, such as Tripadvisor and Quora which achieves accuracy of 87.0885% and AUC-ROC value of 0.86." @default.
- W4293224461 created "2022-08-27" @default.
- W4293224461 creator A5002347053 @default.
- W4293224461 creator A5009761615 @default.
- W4293224461 creator A5083930388 @default.
- W4293224461 date "2022-08-25" @default.
- W4293224461 modified "2023-10-14" @default.
- W4293224461 title "Eliminating Data Duplication in CQA Platforms Using Deep Neural Model" @default.
- W4293224461 cites W2171590421 @default.
- W4293224461 cites W2239327973 @default.
- W4293224461 cites W2884001105 @default.
- W4293224461 cites W2885141472 @default.
- W4293224461 cites W2915002815 @default.
- W4293224461 cites W2968386811 @default.
- W4293224461 cites W2982281530 @default.
- W4293224461 cites W3004262538 @default.
- W4293224461 cites W3010507974 @default.
- W4293224461 cites W3038216073 @default.
- W4293224461 doi "https://doi.org/10.1155/2022/2067449" @default.
- W4293224461 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36059414" @default.
- W4293224461 hasPublicationYear "2022" @default.
- W4293224461 type Work @default.
- W4293224461 citedByCount "2" @default.
- W4293224461 countsByYear W42932244612023 @default.
- W4293224461 crossrefType "journal-article" @default.
- W4293224461 hasAuthorship W4293224461A5002347053 @default.
- W4293224461 hasAuthorship W4293224461A5009761615 @default.
- W4293224461 hasAuthorship W4293224461A5083930388 @default.
- W4293224461 hasBestOaLocation W42932244611 @default.
- W4293224461 hasConcept C103278499 @default.
- W4293224461 hasConcept C108583219 @default.
- W4293224461 hasConcept C115961682 @default.
- W4293224461 hasConcept C119857082 @default.
- W4293224461 hasConcept C137293760 @default.
- W4293224461 hasConcept C154945302 @default.
- W4293224461 hasConcept C204321447 @default.
- W4293224461 hasConcept C23123220 @default.
- W4293224461 hasConcept C41008148 @default.
- W4293224461 hasConcept C44291984 @default.
- W4293224461 hasConcept C50644808 @default.
- W4293224461 hasConcept C520968082 @default.
- W4293224461 hasConcept C95623464 @default.
- W4293224461 hasConceptScore W4293224461C103278499 @default.
- W4293224461 hasConceptScore W4293224461C108583219 @default.
- W4293224461 hasConceptScore W4293224461C115961682 @default.
- W4293224461 hasConceptScore W4293224461C119857082 @default.
- W4293224461 hasConceptScore W4293224461C137293760 @default.
- W4293224461 hasConceptScore W4293224461C154945302 @default.
- W4293224461 hasConceptScore W4293224461C204321447 @default.
- W4293224461 hasConceptScore W4293224461C23123220 @default.
- W4293224461 hasConceptScore W4293224461C41008148 @default.
- W4293224461 hasConceptScore W4293224461C44291984 @default.
- W4293224461 hasConceptScore W4293224461C50644808 @default.
- W4293224461 hasConceptScore W4293224461C520968082 @default.
- W4293224461 hasConceptScore W4293224461C95623464 @default.
- W4293224461 hasLocation W42932244611 @default.
- W4293224461 hasLocation W42932244612 @default.
- W4293224461 hasLocation W42932244613 @default.
- W4293224461 hasOpenAccess W4293224461 @default.
- W4293224461 hasPrimaryLocation W42932244611 @default.
- W4293224461 hasRelatedWork W2795261237 @default.
- W4293224461 hasRelatedWork W3014300295 @default.
- W4293224461 hasRelatedWork W3164822677 @default.
- W4293224461 hasRelatedWork W4223943233 @default.
- W4293224461 hasRelatedWork W4225161397 @default.
- W4293224461 hasRelatedWork W4312200629 @default.
- W4293224461 hasRelatedWork W4360585206 @default.
- W4293224461 hasRelatedWork W4364306694 @default.
- W4293224461 hasRelatedWork W4380075502 @default.
- W4293224461 hasRelatedWork W4380086463 @default.
- W4293224461 hasVolume "2022" @default.
- W4293224461 isParatext "false" @default.
- W4293224461 isRetracted "false" @default.
- W4293224461 workType "article" @default.