Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293225839> ?p ?o ?g. }
- W4293225839 abstract "The massive and continuous spread of COVID-19 has motivated researchers around the world to intensely explore, understand, and develop new techniques for diagnosis and treatment. Although lung ultrasound imaging is a less established approach when compared to other medical imaging modalities such as X-ray and CT, multiple studies have demonstrated its promise to diagnose COVID-19 patients. At the same time, many deep learning models have been built to improve the diagnostic efficiency of medical imaging. The integration of these initially parallel efforts has led multiple researchers to report deep learning applications in medical imaging of COVID-19 patients, most of which demonstrate the outstanding potential of deep learning to aid in the diagnosis of COVID-19. This invited review is focused on deep learning applications in lung ultrasound imaging of COVID-19 and provides a comprehensive overview of ultrasound systems utilized for data acquisition, associated datasets, deep learning models, and comparative performance." @default.
- W4293225839 created "2022-08-27" @default.
- W4293225839 creator A5003188378 @default.
- W4293225839 creator A5074800190 @default.
- W4293225839 date "2022-01-01" @default.
- W4293225839 modified "2023-10-16" @default.
- W4293225839 title "A Review of Deep Learning Applications in Lung Ultrasound Imaging of COVID-19 Patients" @default.
- W4293225839 cites W1901129140 @default.
- W4293225839 cites W1965704925 @default.
- W4293225839 cites W1976025501 @default.
- W4293225839 cites W2060878354 @default.
- W4293225839 cites W2096798358 @default.
- W4293225839 cites W2103136508 @default.
- W4293225839 cites W2108598243 @default.
- W4293225839 cites W2118871737 @default.
- W4293225839 cites W2119638066 @default.
- W4293225839 cites W2139491315 @default.
- W4293225839 cites W2147800946 @default.
- W4293225839 cites W2149454215 @default.
- W4293225839 cites W2168958519 @default.
- W4293225839 cites W2183341477 @default.
- W4293225839 cites W2194775991 @default.
- W4293225839 cites W2295107390 @default.
- W4293225839 cites W2509607465 @default.
- W4293225839 cites W2531409750 @default.
- W4293225839 cites W2533800772 @default.
- W4293225839 cites W2549139847 @default.
- W4293225839 cites W2752782242 @default.
- W4293225839 cites W2790740146 @default.
- W4293225839 cites W2791533295 @default.
- W4293225839 cites W2884436604 @default.
- W4293225839 cites W2889874857 @default.
- W4293225839 cites W2895763047 @default.
- W4293225839 cites W2909194930 @default.
- W4293225839 cites W2910831172 @default.
- W4293225839 cites W2921827007 @default.
- W4293225839 cites W2922414630 @default.
- W4293225839 cites W2941964694 @default.
- W4293225839 cites W2945976633 @default.
- W4293225839 cites W2949208911 @default.
- W4293225839 cites W2962858109 @default.
- W4293225839 cites W2963061824 @default.
- W4293225839 cites W2963163009 @default.
- W4293225839 cites W2963351448 @default.
- W4293225839 cites W2963446712 @default.
- W4293225839 cites W2964081807 @default.
- W4293225839 cites W2964309882 @default.
- W4293225839 cites W2964350391 @default.
- W4293225839 cites W2965954137 @default.
- W4293225839 cites W2969265612 @default.
- W4293225839 cites W2979708377 @default.
- W4293225839 cites W2981500492 @default.
- W4293225839 cites W3002108456 @default.
- W4293225839 cites W3006082171 @default.
- W4293225839 cites W3006882119 @default.
- W4293225839 cites W3007497549 @default.
- W4293225839 cites W3007926128 @default.
- W4293225839 cites W3008827533 @default.
- W4293225839 cites W3009309404 @default.
- W4293225839 cites W3010519118 @default.
- W4293225839 cites W3010604545 @default.
- W4293225839 cites W3011035774 @default.
- W4293225839 cites W3012097287 @default.
- W4293225839 cites W3012817855 @default.
- W4293225839 cites W3015453652 @default.
- W4293225839 cites W3016185001 @default.
- W4293225839 cites W3022437947 @default.
- W4293225839 cites W3024925548 @default.
- W4293225839 cites W3025576489 @default.
- W4293225839 cites W3030314753 @default.
- W4293225839 cites W3033160145 @default.
- W4293225839 cites W3037233011 @default.
- W4293225839 cites W3049131298 @default.
- W4293225839 cites W3086039674 @default.
- W4293225839 cites W3086200677 @default.
- W4293225839 cites W3096831136 @default.
- W4293225839 cites W3108592517 @default.
- W4293225839 cites W3112906655 @default.
- W4293225839 cites W3117676280 @default.
- W4293225839 cites W3130844452 @default.
- W4293225839 cites W3132380572 @default.
- W4293225839 cites W3133027519 @default.
- W4293225839 cites W3133600711 @default.
- W4293225839 cites W3138972185 @default.
- W4293225839 cites W3154126551 @default.
- W4293225839 cites W3164214265 @default.
- W4293225839 cites W3182792026 @default.
- W4293225839 cites W3195351540 @default.
- W4293225839 cites W3198156980 @default.
- W4293225839 cites W3201701662 @default.
- W4293225839 cites W4206205659 @default.
- W4293225839 cites W93323485 @default.
- W4293225839 doi "https://doi.org/10.34133/2022/9780173" @default.
- W4293225839 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36714302" @default.
- W4293225839 hasPublicationYear "2022" @default.
- W4293225839 type Work @default.
- W4293225839 citedByCount "16" @default.
- W4293225839 countsByYear W42932258392022 @default.
- W4293225839 countsByYear W42932258392023 @default.
- W4293225839 crossrefType "journal-article" @default.