Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293232017> ?p ?o ?g. }
- W4293232017 abstract "Mangroves play an extremely important role in purifying the atmosphere and responding to global temperature changes. The analysis of chemical elements (carbon, nitrogen, phosphorus, etc.) in mangroves is an effective way to investigate physiological activities, such as vegetation growth, development, and material metabolism. Therefore, the monitoring of mangrove stoichiometry is extremely important for mangrove restoration. Here, two mangrove species, Kandelia candel (KC) and Aegiceras corniculatum (AC), were studied in the Quanzhou Bay Estuary Wetland Nature Reserve. Two machine learning models [random forest (RF) and back propagation neural network (BPNN)] and partial least squares (PLS) were established with the original spectral data as independent variables, and the optimal model was selected by comparing the simple cross-validation VEcv, the ratio of performance to deviation, and the root mean square error (RMSE). The results showed that: (1) the contents of total phosphorous and total nitrogen decreased gradually and the content of total carbon of mangroves increased gradually with an increase in age at restoration; (2) hyperspectral modeling can invert the ecological stoichiometries of KC and AC, and it can be used to effectively monitor the growth status of the species studied; and (3) model performance ranking, PLS > RF > BPNN, where PLS (VEcv ≥ 0.60 and RMSE < 40) was significantly better than the other two models, and BPNN was the least effective and not suitable for hyperspectral inversion modeling of KC and AC ecological stoichiometries. This study provides a methodological basis for long-term and large-scale dynamic monitoring of mangrove ecological stoichiometries and mangrove restoration quality based on hyperspectral data." @default.
- W4293232017 created "2022-08-27" @default.
- W4293232017 creator A5000359231 @default.
- W4293232017 creator A5000432967 @default.
- W4293232017 creator A5006821970 @default.
- W4293232017 creator A5012677271 @default.
- W4293232017 creator A5029042088 @default.
- W4293232017 creator A5046580415 @default.
- W4293232017 creator A5048989648 @default.
- W4293232017 creator A5054499454 @default.
- W4293232017 creator A5066762784 @default.
- W4293232017 creator A5070550289 @default.
- W4293232017 creator A5083389305 @default.
- W4293232017 date "2022-08-25" @default.
- W4293232017 modified "2023-10-15" @default.
- W4293232017 title "Hyperspectral prediction of mangrove leaf stoichiometries in different restoration areas based on machine learning models" @default.
- W4293232017 cites W1467891129 @default.
- W4293232017 cites W1506230196 @default.
- W4293232017 cites W1964503221 @default.
- W4293232017 cites W2003496766 @default.
- W4293232017 cites W2012552263 @default.
- W4293232017 cites W2018627383 @default.
- W4293232017 cites W2021306799 @default.
- W4293232017 cites W2040909995 @default.
- W4293232017 cites W2041550093 @default.
- W4293232017 cites W2084151276 @default.
- W4293232017 cites W2118848406 @default.
- W4293232017 cites W2166660987 @default.
- W4293232017 cites W2218047931 @default.
- W4293232017 cites W2324172550 @default.
- W4293232017 cites W2334491846 @default.
- W4293232017 cites W2397914484 @default.
- W4293232017 cites W2409620547 @default.
- W4293232017 cites W2522105154 @default.
- W4293232017 cites W2653148934 @default.
- W4293232017 cites W2735048756 @default.
- W4293232017 cites W2746485780 @default.
- W4293232017 cites W2788419020 @default.
- W4293232017 cites W2797781073 @default.
- W4293232017 cites W2798093199 @default.
- W4293232017 cites W2804589896 @default.
- W4293232017 cites W2808574276 @default.
- W4293232017 cites W2907775862 @default.
- W4293232017 cites W2913079708 @default.
- W4293232017 cites W2925616697 @default.
- W4293232017 cites W2948897812 @default.
- W4293232017 cites W2972824023 @default.
- W4293232017 cites W2972871014 @default.
- W4293232017 cites W2972880073 @default.
- W4293232017 cites W2977567418 @default.
- W4293232017 cites W3010715462 @default.
- W4293232017 cites W3022871574 @default.
- W4293232017 cites W3037130628 @default.
- W4293232017 cites W3037438353 @default.
- W4293232017 cites W3083718096 @default.
- W4293232017 cites W3084302144 @default.
- W4293232017 cites W3084930612 @default.
- W4293232017 cites W3092607926 @default.
- W4293232017 cites W3094393925 @default.
- W4293232017 cites W3156243259 @default.
- W4293232017 cites W3171227184 @default.
- W4293232017 cites W3176683426 @default.
- W4293232017 cites W3185923647 @default.
- W4293232017 cites W3211157568 @default.
- W4293232017 cites W4206413427 @default.
- W4293232017 cites W4214613693 @default.
- W4293232017 cites W4224436525 @default.
- W4293232017 cites W4226321393 @default.
- W4293232017 cites W4281557545 @default.
- W4293232017 doi "https://doi.org/10.1117/1.jrs.16.034525" @default.
- W4293232017 hasPublicationYear "2022" @default.
- W4293232017 type Work @default.
- W4293232017 citedByCount "1" @default.
- W4293232017 countsByYear W42932320172023 @default.
- W4293232017 crossrefType "journal-article" @default.
- W4293232017 hasAuthorship W4293232017A5000359231 @default.
- W4293232017 hasAuthorship W4293232017A5000432967 @default.
- W4293232017 hasAuthorship W4293232017A5006821970 @default.
- W4293232017 hasAuthorship W4293232017A5012677271 @default.
- W4293232017 hasAuthorship W4293232017A5029042088 @default.
- W4293232017 hasAuthorship W4293232017A5046580415 @default.
- W4293232017 hasAuthorship W4293232017A5048989648 @default.
- W4293232017 hasAuthorship W4293232017A5054499454 @default.
- W4293232017 hasAuthorship W4293232017A5066762784 @default.
- W4293232017 hasAuthorship W4293232017A5070550289 @default.
- W4293232017 hasAuthorship W4293232017A5083389305 @default.
- W4293232017 hasConcept C105795698 @default.
- W4293232017 hasConcept C139945424 @default.
- W4293232017 hasConcept C142724271 @default.
- W4293232017 hasConcept C159078339 @default.
- W4293232017 hasConcept C18903297 @default.
- W4293232017 hasConcept C205649164 @default.
- W4293232017 hasConcept C22354355 @default.
- W4293232017 hasConcept C2776133958 @default.
- W4293232017 hasConcept C2780717840 @default.
- W4293232017 hasConcept C33923547 @default.
- W4293232017 hasConcept C39432304 @default.
- W4293232017 hasConcept C62649853 @default.
- W4293232017 hasConcept C67715294 @default.
- W4293232017 hasConcept C68874143 @default.