Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293233627> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4293233627 abstract "Techniques employing Data fusion concepts are regularly being used in Quantitative Risk Management (QRM) for robust analysis. In our previous work, we studied the most commonly used risk metric of interest, Value-at-Risk <tex>$(mathbf{VaR})$</tex>. While VaR is a commonly used risk metric, an alternative risk metric, Expected Shortfall (ES) is well known to have better theoretical properties than VaR. We extend our previous work on studying VaR to include estimating the ES also known as Conditional Value-at-Risk (CVaR). The standard approach of estimating CVaR involves using Monte Carlo simulation (MCS) approach (denoted henceforth as classical approach). This approach involves breaking down the losses into loss severity and loss frequency assuming independence among them. In practice, this assumption may not always hold. To overcome this limitation and handle cases with both light & heavy-tail data, we propose using both a parametric & non-parametric approach. We implement Data-driven Partitioning of Frequency and Severity (DPFS) using K-means Clustering, and Copula-based Parametric modeling of Frequency and Severity (CPFS). These two approaches are verified using simulation experiments on synthetic data and validated on five publicly available datasets from diverse domains. The classical approach estimates CVaR inaccurately for 80% of the simulated data sets and for 60% of the real-world data sets studied in this work. Both the DPFS and the CPFS methodologies attain CVaR estimates within 99% historical bootstrap confidence interval bounds for both simulated and realworld data. Overall, we find that the CPFS method performs better in CVaR estimation for real-world datasets than our previous studies for VaR estimation." @default.
- W4293233627 created "2022-08-27" @default.
- W4293233627 creator A5016285030 @default.
- W4293233627 creator A5064650636 @default.
- W4293233627 creator A5075015477 @default.
- W4293233627 date "2019-07-01" @default.
- W4293233627 modified "2023-10-11" @default.
- W4293233627 title "Flexible Expected Shortfall Estimation Using Parametric & Non-Parametric Methods with Applications in Finance, Insurance & Climatology" @default.
- W4293233627 cites W172019933 @default.
- W4293233627 cites W1911601650 @default.
- W4293233627 cites W1987971958 @default.
- W4293233627 cites W2056265418 @default.
- W4293233627 cites W2074511911 @default.
- W4293233627 cites W2107795980 @default.
- W4293233627 cites W2338553426 @default.
- W4293233627 cites W2488157181 @default.
- W4293233627 cites W2495354211 @default.
- W4293233627 cites W2548530730 @default.
- W4293233627 cites W2743415718 @default.
- W4293233627 cites W2795353455 @default.
- W4293233627 cites W2890981004 @default.
- W4293233627 cites W3011865677 @default.
- W4293233627 cites W3122412356 @default.
- W4293233627 cites W3123572629 @default.
- W4293233627 cites W3124901277 @default.
- W4293233627 cites W3125094566 @default.
- W4293233627 doi "https://doi.org/10.23919/fusion43075.2019.9011398" @default.
- W4293233627 hasPublicationYear "2019" @default.
- W4293233627 type Work @default.
- W4293233627 citedByCount "0" @default.
- W4293233627 crossrefType "proceedings-article" @default.
- W4293233627 hasAuthorship W4293233627A5016285030 @default.
- W4293233627 hasAuthorship W4293233627A5064650636 @default.
- W4293233627 hasAuthorship W4293233627A5075015477 @default.
- W4293233627 hasConcept C10138342 @default.
- W4293233627 hasConcept C105795698 @default.
- W4293233627 hasConcept C117251300 @default.
- W4293233627 hasConcept C126255220 @default.
- W4293233627 hasConcept C127413603 @default.
- W4293233627 hasConcept C149782125 @default.
- W4293233627 hasConcept C162324750 @default.
- W4293233627 hasConcept C17618745 @default.
- W4293233627 hasConcept C176217482 @default.
- W4293233627 hasConcept C19499675 @default.
- W4293233627 hasConcept C21547014 @default.
- W4293233627 hasConcept C2779922397 @default.
- W4293233627 hasConcept C32896092 @default.
- W4293233627 hasConcept C33923547 @default.
- W4293233627 hasConcept C41008148 @default.
- W4293233627 hasConcept C5496284 @default.
- W4293233627 hasConcept C94128290 @default.
- W4293233627 hasConceptScore W4293233627C10138342 @default.
- W4293233627 hasConceptScore W4293233627C105795698 @default.
- W4293233627 hasConceptScore W4293233627C117251300 @default.
- W4293233627 hasConceptScore W4293233627C126255220 @default.
- W4293233627 hasConceptScore W4293233627C127413603 @default.
- W4293233627 hasConceptScore W4293233627C149782125 @default.
- W4293233627 hasConceptScore W4293233627C162324750 @default.
- W4293233627 hasConceptScore W4293233627C17618745 @default.
- W4293233627 hasConceptScore W4293233627C176217482 @default.
- W4293233627 hasConceptScore W4293233627C19499675 @default.
- W4293233627 hasConceptScore W4293233627C21547014 @default.
- W4293233627 hasConceptScore W4293233627C2779922397 @default.
- W4293233627 hasConceptScore W4293233627C32896092 @default.
- W4293233627 hasConceptScore W4293233627C33923547 @default.
- W4293233627 hasConceptScore W4293233627C41008148 @default.
- W4293233627 hasConceptScore W4293233627C5496284 @default.
- W4293233627 hasConceptScore W4293233627C94128290 @default.
- W4293233627 hasLocation W42932336271 @default.
- W4293233627 hasOpenAccess W4293233627 @default.
- W4293233627 hasPrimaryLocation W42932336271 @default.
- W4293233627 hasRelatedWork W1106997938 @default.
- W4293233627 hasRelatedWork W2002736235 @default.
- W4293233627 hasRelatedWork W2002968294 @default.
- W4293233627 hasRelatedWork W2232143283 @default.
- W4293233627 hasRelatedWork W2374661407 @default.
- W4293233627 hasRelatedWork W2594064876 @default.
- W4293233627 hasRelatedWork W2783733712 @default.
- W4293233627 hasRelatedWork W2916706584 @default.
- W4293233627 hasRelatedWork W4316167276 @default.
- W4293233627 hasRelatedWork W48101171 @default.
- W4293233627 isParatext "false" @default.
- W4293233627 isRetracted "false" @default.
- W4293233627 workType "article" @default.