Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293236307> ?p ?o ?g. }
- W4293236307 abstract "Abstract Background The National Institute for Health Research Health Informatics Collaborative (NIHR HIC) viral hepatitis theme is working to overcome governance and data challenges to collate routine clinical data from electronic patients records from multiple UK hospital sites for translational research. The development of hepatocellular carcinoma (HCC) is a critical outcome for patients with viral hepatitis with the drivers of cancer transformation poorly understood. Objective This study aims to develop a natural language processing (NLP) algorithm for automatic HCC identification from imaging reports to facilitate studies into HCC. Methods 1140 imaging reports were retrieved from the NIHR HIC viral hepatitis research database v1.0. These reports were from two sites, one used for method development (site 1) and the other for validation (site 2). Reports were initially manually annotated as binary classes (HCC vs. non-HCC). We designed inference rules for recognising HCC presence, wherein medical terms for eligibility criteria of HCC were determined by domain experts. A rule-based NLP algorithm with five submodules (regular expressions of medical terms, terms recognition, negation detection, sentence tagging, and report label generation) was developed and iteratively tuned. Results Our rule-based algorithm achieves an accuracy of 99.85% (sensitivity: 90%, specificity: 100%) for identifying HCC on the development set and 99.59% (sensitivity: 100%, specificity: 99.58%) on the validation set. This method outperforms several off-the-shelf models on HCC identification including “machine learning based” and “deep learning based” text classifiers in achieving significantly higher sensitivity. Conclusion Our rule-based NLP method gives high sensitivity and high specificity for HCC identification, even from imbalanced datasets with a small number positive cases, and can be used to rapidly screen imaging reports, at large-scale to facilitate epidemiological and clinical studies into HCC. Statement of Significance Problem Establishing a cohort of hepatocellular carcinoma (HCC) from imaging reports via manual review requires advanced clinical knowledge and is costly, time consuming, impractical when performed on a large scale. What is Already Known Although some studies have applied natural language processing (NLP) techniques to facilitate identifying HCC information from narrative medical data, the proposed methods based on a pre-selection by diagnosis codes, or subject to certain standard templates, have limitations in application. What This Paper Adds We have developed a hierarchical rule-based NLP method for automatic identification of HCC that uses diagnostic concepts and tumour feature representations that suggest an HCC diagnosis to form reference rules, accounts for differing linguistic styles within reports, and embeds a data pre-processing module that can be configured and customised for different reporting formats. In doing so we have overcome major challenges including the analysis of imbalanced data (inherent in clinical records) and lack of existing unified reporting standards." @default.
- W4293236307 created "2022-08-27" @default.
- W4293236307 creator A5005138979 @default.
- W4293236307 creator A5007850485 @default.
- W4293236307 creator A5011968933 @default.
- W4293236307 creator A5015194807 @default.
- W4293236307 creator A5015338921 @default.
- W4293236307 creator A5015871812 @default.
- W4293236307 creator A5016226904 @default.
- W4293236307 creator A5020760080 @default.
- W4293236307 creator A5029367587 @default.
- W4293236307 creator A5030187840 @default.
- W4293236307 creator A5031246398 @default.
- W4293236307 creator A5040328691 @default.
- W4293236307 creator A5041815746 @default.
- W4293236307 creator A5054812318 @default.
- W4293236307 creator A5057977011 @default.
- W4293236307 creator A5060944230 @default.
- W4293236307 creator A5066895396 @default.
- W4293236307 creator A5069755583 @default.
- W4293236307 creator A5077721999 @default.
- W4293236307 date "2022-08-24" @default.
- W4293236307 modified "2023-09-28" @default.
- W4293236307 title "Identifying Hepatocellular Carcinoma from imaging reports using natural language processing to facilitate data extraction from electronic patient records" @default.
- W4293236307 cites W1832693441 @default.
- W4293236307 cites W2043768386 @default.
- W4293236307 cites W2102519580 @default.
- W4293236307 cites W2109202667 @default.
- W4293236307 cites W2135136011 @default.
- W4293236307 cites W2139865360 @default.
- W4293236307 cites W2277004004 @default.
- W4293236307 cites W2329011065 @default.
- W4293236307 cites W2338526423 @default.
- W4293236307 cites W2470673105 @default.
- W4293236307 cites W2606833494 @default.
- W4293236307 cites W2625856057 @default.
- W4293236307 cites W2754747396 @default.
- W4293236307 cites W2796067155 @default.
- W4293236307 cites W2836242602 @default.
- W4293236307 cites W2917682189 @default.
- W4293236307 cites W2927032858 @default.
- W4293236307 cites W2951934944 @default.
- W4293236307 cites W2963063806 @default.
- W4293236307 cites W2963716420 @default.
- W4293236307 cites W2971258845 @default.
- W4293236307 cites W2980748755 @default.
- W4293236307 cites W2997782431 @default.
- W4293236307 cites W3007916645 @default.
- W4293236307 cites W3037109418 @default.
- W4293236307 cites W3164323420 @default.
- W4293236307 cites W3173561451 @default.
- W4293236307 cites W3207148836 @default.
- W4293236307 cites W3211274473 @default.
- W4293236307 cites W4232620598 @default.
- W4293236307 cites W4242769447 @default.
- W4293236307 cites W4284698419 @default.
- W4293236307 doi "https://doi.org/10.1101/2022.08.23.22279119" @default.
- W4293236307 hasPublicationYear "2022" @default.
- W4293236307 type Work @default.
- W4293236307 citedByCount "0" @default.
- W4293236307 crossrefType "posted-content" @default.
- W4293236307 hasAuthorship W4293236307A5005138979 @default.
- W4293236307 hasAuthorship W4293236307A5007850485 @default.
- W4293236307 hasAuthorship W4293236307A5011968933 @default.
- W4293236307 hasAuthorship W4293236307A5015194807 @default.
- W4293236307 hasAuthorship W4293236307A5015338921 @default.
- W4293236307 hasAuthorship W4293236307A5015871812 @default.
- W4293236307 hasAuthorship W4293236307A5016226904 @default.
- W4293236307 hasAuthorship W4293236307A5020760080 @default.
- W4293236307 hasAuthorship W4293236307A5029367587 @default.
- W4293236307 hasAuthorship W4293236307A5030187840 @default.
- W4293236307 hasAuthorship W4293236307A5031246398 @default.
- W4293236307 hasAuthorship W4293236307A5040328691 @default.
- W4293236307 hasAuthorship W4293236307A5041815746 @default.
- W4293236307 hasAuthorship W4293236307A5054812318 @default.
- W4293236307 hasAuthorship W4293236307A5057977011 @default.
- W4293236307 hasAuthorship W4293236307A5060944230 @default.
- W4293236307 hasAuthorship W4293236307A5066895396 @default.
- W4293236307 hasAuthorship W4293236307A5069755583 @default.
- W4293236307 hasAuthorship W4293236307A5077721999 @default.
- W4293236307 hasBestOaLocation W42932363071 @default.
- W4293236307 hasConcept C119857082 @default.
- W4293236307 hasConcept C126322002 @default.
- W4293236307 hasConcept C154945302 @default.
- W4293236307 hasConcept C195807954 @default.
- W4293236307 hasConcept C204321447 @default.
- W4293236307 hasConcept C2777072776 @default.
- W4293236307 hasConcept C2778019345 @default.
- W4293236307 hasConcept C41008148 @default.
- W4293236307 hasConcept C71924100 @default.
- W4293236307 hasConceptScore W4293236307C119857082 @default.
- W4293236307 hasConceptScore W4293236307C126322002 @default.
- W4293236307 hasConceptScore W4293236307C154945302 @default.
- W4293236307 hasConceptScore W4293236307C195807954 @default.
- W4293236307 hasConceptScore W4293236307C204321447 @default.
- W4293236307 hasConceptScore W4293236307C2777072776 @default.
- W4293236307 hasConceptScore W4293236307C2778019345 @default.
- W4293236307 hasConceptScore W4293236307C41008148 @default.
- W4293236307 hasConceptScore W4293236307C71924100 @default.
- W4293236307 hasLocation W42932363071 @default.