Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293239569> ?p ?o ?g. }
- W4293239569 endingPage "268" @default.
- W4293239569 startingPage "253" @default.
- W4293239569 abstract "Abstract Existing studies on automated construction equipment monitoring have focused mainly on activity recognition rather than fault detection. This paper proposes a novel equipment activity recognition and fault detection framework called hybrid unsupervised and supervised machine learning (HUS‐ML). HUS‐ML first identifies normal operations and known faulty conditions through supervised learning. Then, an anomaly detection algorithm is applied to spot any unseen faulty conditions. The framework is tested using acceleration measurements from a low‐rise automated construction system prototype. HUS‐ML outperformed the conventional machine learning approach in activity recognition and fault detection with an average F1 score of 86.6%. The conventional approach failed to detect unseen faulty operations. HUS‐ML identified known faulty operations and unseen faulty operations with F1 scores of 98.11% and 76.19%, respectively. The generalizability of the framework is demonstrated by validating it on an independent benchmark dataset with good results." @default.
- W4293239569 created "2022-08-27" @default.
- W4293239569 creator A5026023687 @default.
- W4293239569 creator A5043746278 @default.
- W4293239569 creator A5085063957 @default.
- W4293239569 date "2022-04-28" @default.
- W4293239569 modified "2023-10-16" @default.
- W4293239569 title "Equipment activity recognition and early fault detection in automated construction through a hybrid machine learning framework" @default.
- W4293239569 cites W1487197069 @default.
- W4293239569 cites W1992689987 @default.
- W4293239569 cites W2002844166 @default.
- W4293239569 cites W2070195264 @default.
- W4293239569 cites W2082299583 @default.
- W4293239569 cites W2082459479 @default.
- W4293239569 cites W2086067762 @default.
- W4293239569 cites W2120163187 @default.
- W4293239569 cites W2135089901 @default.
- W4293239569 cites W2214628823 @default.
- W4293239569 cites W2324044936 @default.
- W4293239569 cites W2510934300 @default.
- W4293239569 cites W2526793952 @default.
- W4293239569 cites W2704368076 @default.
- W4293239569 cites W2724573302 @default.
- W4293239569 cites W2729478895 @default.
- W4293239569 cites W2736832651 @default.
- W4293239569 cites W2769634371 @default.
- W4293239569 cites W2781682874 @default.
- W4293239569 cites W2782274301 @default.
- W4293239569 cites W2793164711 @default.
- W4293239569 cites W2807113035 @default.
- W4293239569 cites W2921440296 @default.
- W4293239569 cites W2952234971 @default.
- W4293239569 cites W2954350473 @default.
- W4293239569 cites W2966126335 @default.
- W4293239569 cites W2972034512 @default.
- W4293239569 cites W2978753974 @default.
- W4293239569 cites W2983535430 @default.
- W4293239569 cites W2994999390 @default.
- W4293239569 cites W2999976040 @default.
- W4293239569 cites W3006342871 @default.
- W4293239569 cites W3007171225 @default.
- W4293239569 cites W3009948084 @default.
- W4293239569 cites W3015666110 @default.
- W4293239569 cites W3044390034 @default.
- W4293239569 cites W3045760364 @default.
- W4293239569 cites W3096153045 @default.
- W4293239569 cites W3097225096 @default.
- W4293239569 cites W3099245869 @default.
- W4293239569 cites W3111839142 @default.
- W4293239569 cites W3122571605 @default.
- W4293239569 cites W3191451716 @default.
- W4293239569 cites W3206968523 @default.
- W4293239569 cites W4255939847 @default.
- W4293239569 cites W4378009855 @default.
- W4293239569 cites W97655871 @default.
- W4293239569 doi "https://doi.org/10.1111/mice.12848" @default.
- W4293239569 hasPublicationYear "2022" @default.
- W4293239569 type Work @default.
- W4293239569 citedByCount "2" @default.
- W4293239569 countsByYear W42932395692023 @default.
- W4293239569 crossrefType "journal-article" @default.
- W4293239569 hasAuthorship W4293239569A5026023687 @default.
- W4293239569 hasAuthorship W4293239569A5043746278 @default.
- W4293239569 hasAuthorship W4293239569A5085063957 @default.
- W4293239569 hasConcept C105795698 @default.
- W4293239569 hasConcept C119857082 @default.
- W4293239569 hasConcept C13280743 @default.
- W4293239569 hasConcept C152745839 @default.
- W4293239569 hasConcept C153180895 @default.
- W4293239569 hasConcept C154945302 @default.
- W4293239569 hasConcept C172707124 @default.
- W4293239569 hasConcept C185798385 @default.
- W4293239569 hasConcept C205649164 @default.
- W4293239569 hasConcept C27158222 @default.
- W4293239569 hasConcept C33923547 @default.
- W4293239569 hasConcept C41008148 @default.
- W4293239569 hasConcept C739882 @default.
- W4293239569 hasConceptScore W4293239569C105795698 @default.
- W4293239569 hasConceptScore W4293239569C119857082 @default.
- W4293239569 hasConceptScore W4293239569C13280743 @default.
- W4293239569 hasConceptScore W4293239569C152745839 @default.
- W4293239569 hasConceptScore W4293239569C153180895 @default.
- W4293239569 hasConceptScore W4293239569C154945302 @default.
- W4293239569 hasConceptScore W4293239569C172707124 @default.
- W4293239569 hasConceptScore W4293239569C185798385 @default.
- W4293239569 hasConceptScore W4293239569C205649164 @default.
- W4293239569 hasConceptScore W4293239569C27158222 @default.
- W4293239569 hasConceptScore W4293239569C33923547 @default.
- W4293239569 hasConceptScore W4293239569C41008148 @default.
- W4293239569 hasConceptScore W4293239569C739882 @default.
- W4293239569 hasIssue "2" @default.
- W4293239569 hasLocation W42932395691 @default.
- W4293239569 hasOpenAccess W4293239569 @default.
- W4293239569 hasPrimaryLocation W42932395691 @default.
- W4293239569 hasRelatedWork W1485630101 @default.
- W4293239569 hasRelatedWork W2076520961 @default.
- W4293239569 hasRelatedWork W2498017833 @default.
- W4293239569 hasRelatedWork W2961085424 @default.