Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293243609> ?p ?o ?g. }
- W4293243609 endingPage "e39582" @default.
- W4293243609 startingPage "e39582" @default.
- W4293243609 abstract "Since the beginning of the COVID-19 pandemic, over 480 million people have been infected and more than 6 million people have died from COVID-19 worldwide. In some patients with acute COVID-19, symptoms manifest over a longer period, which is also called long-COVID. Unmet medical needs related to long-COVID are high, since there are no treatments approved. Patients experiment with various medications and supplements hoping to alleviate their suffering. They often share their experiences on social media.The aim of this study was to explore the feasibility of social media mining methods to extract important compounds from the perspective of patients. The goal is to provide an overview of different medication strategies and important agents mentioned in Reddit users' self-reports to support hypothesis generation for drug repurposing, by incorporating patients' experiences.We used named-entity recognition to extract substances representing medications or supplements used to treat long-COVID from almost 70,000 posts on the /r/covidlonghaulers subreddit. We analyzed substances by frequency, co-occurrences, and network analysis to identify important substances and substance clusters.The named-entity recognition algorithm achieved an F1 score of 0.67. A total of 28,447 substance entities and 5789 word co-occurrence pairs were extracted. Histamine antagonists, famotidine, magnesium, vitamins, and steroids were the most frequently mentioned substances. Network analysis revealed three clusters of substances, indicating certain medication patterns.This feasibility study indicates that network analysis can be used to characterize the medication strategies discussed in social media. Comparison with existing literature shows that this approach identifies substances that are promising candidates for drug repurposing, such as antihistamines, steroids, or antidepressants. In the context of a pandemic, the proposed method could be used to support drug repurposing hypothesis development by prioritizing substances that are important to users." @default.
- W4293243609 created "2022-08-27" @default.
- W4293243609 creator A5072763468 @default.
- W4293243609 creator A5089561708 @default.
- W4293243609 date "2022-10-03" @default.
- W4293243609 modified "2023-10-05" @default.
- W4293243609 title "Social Media Mining of Long-COVID Self-Medication Reported by Reddit Users: Feasibility Study to Support Drug Repurposing" @default.
- W4293243609 cites W111285361 @default.
- W4293243609 cites W1473718842 @default.
- W4293243609 cites W1493798236 @default.
- W4293243609 cites W1762174004 @default.
- W4293243609 cites W1992009922 @default.
- W4293243609 cites W2047433176 @default.
- W4293243609 cites W2075359469 @default.
- W4293243609 cites W2083258699 @default.
- W4293243609 cites W2115702862 @default.
- W4293243609 cites W2124095343 @default.
- W4293243609 cites W2133638175 @default.
- W4293243609 cites W2139865360 @default.
- W4293243609 cites W2151936673 @default.
- W4293243609 cites W2159583324 @default.
- W4293243609 cites W2346452181 @default.
- W4293243609 cites W2595801627 @default.
- W4293243609 cites W2598265731 @default.
- W4293243609 cites W2624751168 @default.
- W4293243609 cites W2625311081 @default.
- W4293243609 cites W2742647826 @default.
- W4293243609 cites W2753913077 @default.
- W4293243609 cites W2782403262 @default.
- W4293243609 cites W2798859316 @default.
- W4293243609 cites W2806585586 @default.
- W4293243609 cites W2896002881 @default.
- W4293243609 cites W2909510460 @default.
- W4293243609 cites W2933294645 @default.
- W4293243609 cites W2936750472 @default.
- W4293243609 cites W2945564149 @default.
- W4293243609 cites W2953417263 @default.
- W4293243609 cites W2963879621 @default.
- W4293243609 cites W2994719636 @default.
- W4293243609 cites W2995249028 @default.
- W4293243609 cites W3011414630 @default.
- W4293243609 cites W3014909035 @default.
- W4293243609 cites W3035103671 @default.
- W4293243609 cites W3049049145 @default.
- W4293243609 cites W3103904419 @default.
- W4293243609 cites W3106188259 @default.
- W4293243609 cites W3128622946 @default.
- W4293243609 cites W3133517424 @default.
- W4293243609 cites W3136955306 @default.
- W4293243609 cites W3152668228 @default.
- W4293243609 cites W3158534136 @default.
- W4293243609 cites W3158840448 @default.
- W4293243609 cites W3160596727 @default.
- W4293243609 cites W3173207811 @default.
- W4293243609 cites W3174188666 @default.
- W4293243609 cites W3175687632 @default.
- W4293243609 cites W3186314395 @default.
- W4293243609 cites W3197607642 @default.
- W4293243609 cites W3197720849 @default.
- W4293243609 cites W3200736908 @default.
- W4293243609 cites W3202161650 @default.
- W4293243609 cites W3206560395 @default.
- W4293243609 cites W3210891005 @default.
- W4293243609 cites W4200268966 @default.
- W4293243609 cites W4207023170 @default.
- W4293243609 cites W4207071162 @default.
- W4293243609 cites W4210282559 @default.
- W4293243609 cites W4223491560 @default.
- W4293243609 cites W4223986092 @default.
- W4293243609 cites W4283786125 @default.
- W4293243609 cites W79139011 @default.
- W4293243609 doi "https://doi.org/10.2196/39582" @default.
- W4293243609 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36007131" @default.
- W4293243609 hasPublicationYear "2022" @default.
- W4293243609 type Work @default.
- W4293243609 citedByCount "3" @default.
- W4293243609 countsByYear W42932436092023 @default.
- W4293243609 crossrefType "journal-article" @default.
- W4293243609 hasAuthorship W4293243609A5072763468 @default.
- W4293243609 hasAuthorship W4293243609A5089561708 @default.
- W4293243609 hasBestOaLocation W42932436091 @default.
- W4293243609 hasConcept C103637391 @default.
- W4293243609 hasConcept C104863432 @default.
- W4293243609 hasConcept C108827166 @default.
- W4293243609 hasConcept C126322002 @default.
- W4293243609 hasConcept C127413603 @default.
- W4293243609 hasConcept C136764020 @default.
- W4293243609 hasConcept C15744967 @default.
- W4293243609 hasConcept C2779134260 @default.
- W4293243609 hasConcept C2780035454 @default.
- W4293243609 hasConcept C2781263782 @default.
- W4293243609 hasConcept C3008058167 @default.
- W4293243609 hasConcept C41008148 @default.
- W4293243609 hasConcept C512399662 @default.
- W4293243609 hasConcept C518677369 @default.
- W4293243609 hasConcept C519536355 @default.
- W4293243609 hasConcept C524204448 @default.
- W4293243609 hasConcept C548081761 @default.