Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293246105> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4293246105 abstract "In this paper, we present an AI-driven lifestyle intervention service for patients with hypertension. The automated intervention platform consists of a remote monitoring system that ingests lifestyle and blood pressure (BP) data and builds a personalized machine learning (ML) model to generate tailored lifestyle recommendations most relevant to each patient's BP. Lifestyle data is collected from a wearable device and questionnaire mobile app which includes activity, sleep, stress and diet information. BP data is remotely collected using at-home BP monitors. With this data, the system trains random forest models that predict BP from lifestyle features and uses Shapley Value analysis to estimate the impact of features on BP. Precise lifestyle recommendations are generated based on the top lifestyle factors for each patient. To test the system's ability to improve BP, we enrolled hypertensive patients into a three-armed clinical trial. During the 6-month trial period, our system provided weekly recommendations to patients in the experimental group. We evaluate the system's effectiveness based on multiple BP improvement metrics and comparison with a control group. Patients in the experimental group experienced an average BP change of −4.0 and −4.7 mmHg for systolic and diastolic BP, respectively, compared to −0.3 and −0.9 mmHg for the control group. Our results demonstrate that the platform can effectively help patients improve their BP through precise lifestyle recommendations." @default.
- W4293246105 created "2022-08-27" @default.
- W4293246105 creator A5025308099 @default.
- W4293246105 creator A5051864725 @default.
- W4293246105 creator A5071945121 @default.
- W4293246105 creator A5075255260 @default.
- W4293246105 date "2022-07-01" @default.
- W4293246105 modified "2023-09-23" @default.
- W4293246105 title "An mHealth Lifestyle Intervention Service for Improving Blood Pressure using Machine Learning and IoMTs" @default.
- W4293246105 cites W2089901353 @default.
- W4293246105 cites W2125062701 @default.
- W4293246105 cites W2132424470 @default.
- W4293246105 cites W2142935305 @default.
- W4293246105 cites W2174716669 @default.
- W4293246105 cites W2293620633 @default.
- W4293246105 cites W2327678559 @default.
- W4293246105 cites W2761193622 @default.
- W4293246105 cites W2911964244 @default.
- W4293246105 cites W2914462514 @default.
- W4293246105 cites W2966218717 @default.
- W4293246105 cites W2999615587 @default.
- W4293246105 cites W3027481541 @default.
- W4293246105 cites W3184579817 @default.
- W4293246105 doi "https://doi.org/10.1109/icdh55609.2022.00030" @default.
- W4293246105 hasPublicationYear "2022" @default.
- W4293246105 type Work @default.
- W4293246105 citedByCount "1" @default.
- W4293246105 countsByYear W42932461052023 @default.
- W4293246105 crossrefType "proceedings-article" @default.
- W4293246105 hasAuthorship W4293246105A5025308099 @default.
- W4293246105 hasAuthorship W4293246105A5051864725 @default.
- W4293246105 hasAuthorship W4293246105A5071945121 @default.
- W4293246105 hasAuthorship W4293246105A5075255260 @default.
- W4293246105 hasConcept C111919701 @default.
- W4293246105 hasConcept C119857082 @default.
- W4293246105 hasConcept C126322002 @default.
- W4293246105 hasConcept C149635348 @default.
- W4293246105 hasConcept C150594956 @default.
- W4293246105 hasConcept C154945302 @default.
- W4293246105 hasConcept C159110408 @default.
- W4293246105 hasConcept C169258074 @default.
- W4293246105 hasConcept C1862650 @default.
- W4293246105 hasConcept C27415008 @default.
- W4293246105 hasConcept C2779363104 @default.
- W4293246105 hasConcept C2780665704 @default.
- W4293246105 hasConcept C41008148 @default.
- W4293246105 hasConcept C71924100 @default.
- W4293246105 hasConcept C74558129 @default.
- W4293246105 hasConcept C84393581 @default.
- W4293246105 hasConceptScore W4293246105C111919701 @default.
- W4293246105 hasConceptScore W4293246105C119857082 @default.
- W4293246105 hasConceptScore W4293246105C126322002 @default.
- W4293246105 hasConceptScore W4293246105C149635348 @default.
- W4293246105 hasConceptScore W4293246105C150594956 @default.
- W4293246105 hasConceptScore W4293246105C154945302 @default.
- W4293246105 hasConceptScore W4293246105C159110408 @default.
- W4293246105 hasConceptScore W4293246105C169258074 @default.
- W4293246105 hasConceptScore W4293246105C1862650 @default.
- W4293246105 hasConceptScore W4293246105C27415008 @default.
- W4293246105 hasConceptScore W4293246105C2779363104 @default.
- W4293246105 hasConceptScore W4293246105C2780665704 @default.
- W4293246105 hasConceptScore W4293246105C41008148 @default.
- W4293246105 hasConceptScore W4293246105C71924100 @default.
- W4293246105 hasConceptScore W4293246105C74558129 @default.
- W4293246105 hasConceptScore W4293246105C84393581 @default.
- W4293246105 hasLocation W42932461051 @default.
- W4293246105 hasOpenAccess W4293246105 @default.
- W4293246105 hasPrimaryLocation W42932461051 @default.
- W4293246105 hasRelatedWork W2911455822 @default.
- W4293246105 hasRelatedWork W3116896278 @default.
- W4293246105 hasRelatedWork W3174196512 @default.
- W4293246105 hasRelatedWork W3204641204 @default.
- W4293246105 hasRelatedWork W4225360065 @default.
- W4293246105 hasRelatedWork W4282839226 @default.
- W4293246105 hasRelatedWork W4283016678 @default.
- W4293246105 hasRelatedWork W4308191010 @default.
- W4293246105 hasRelatedWork W4322727400 @default.
- W4293246105 hasRelatedWork W4323021782 @default.
- W4293246105 isParatext "false" @default.
- W4293246105 isRetracted "false" @default.
- W4293246105 workType "article" @default.