Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293246952> ?p ?o ?g. }
- W4293246952 abstract "In recent years, the pharmaceutical business has seen a considerable increase in data digitization. With digitization, however, comes the challenge of obtaining, analyzing, and applying knowledge to solve complex clinical problems. Artificial intelligence (AI), which entails a variety of advanced tools and networks that can mimic human intellect, can overcome such challenges with traditional pharmaceutical development. Artificial intelligence and machine learning have a vast role in therapeutic development, including the prediction of drug target and properties of small molecules. By predicting the 3D protein structure, AI techniques, such as Alpha Fold, can help with structure-based drug development. Machine learning algorithms have been utilized to anticipate the properties of small molecules based on their chemical structure. Many researches have shown the importance of using in silico predictive ADMET (absorption, distribution, metabolism, excretion, and toxicity) models to speed up the discovery of small compounds with enhanced efficacy, safety, and dosage. This chapter discusses various roles of these methods in the development of effective therapeutics." @default.
- W4293246952 created "2022-08-27" @default.
- W4293246952 creator A5000116814 @default.
- W4293246952 creator A5027553529 @default.
- W4293246952 creator A5030355052 @default.
- W4293246952 creator A5082030725 @default.
- W4293246952 date "2022-11-30" @default.
- W4293246952 modified "2023-10-18" @default.
- W4293246952 title "Machine Learning and Artificial Intelligence in Therapeutics and Drug Development Life Cycle" @default.
- W4293246952 cites W1531674615 @default.
- W4293246952 cites W2028440694 @default.
- W4293246952 cites W2075424814 @default.
- W4293246952 cites W2316935397 @default.
- W4293246952 cites W2514534732 @default.
- W4293246952 cites W2529838527 @default.
- W4293246952 cites W2534288757 @default.
- W4293246952 cites W2565608178 @default.
- W4293246952 cites W2587947127 @default.
- W4293246952 cites W2765741991 @default.
- W4293246952 cites W2809216727 @default.
- W4293246952 cites W2886700507 @default.
- W4293246952 cites W2901719664 @default.
- W4293246952 cites W2914568206 @default.
- W4293246952 cites W2914635984 @default.
- W4293246952 cites W2924988727 @default.
- W4293246952 cites W2967175367 @default.
- W4293246952 cites W2967904513 @default.
- W4293246952 cites W2970801846 @default.
- W4293246952 cites W2997665523 @default.
- W4293246952 cites W3000139398 @default.
- W4293246952 cites W3007439136 @default.
- W4293246952 cites W3019535438 @default.
- W4293246952 cites W3023126697 @default.
- W4293246952 cites W3048079539 @default.
- W4293246952 cites W3088209301 @default.
- W4293246952 cites W3092125004 @default.
- W4293246952 cites W3094492244 @default.
- W4293246952 cites W3096097684 @default.
- W4293246952 cites W3099252273 @default.
- W4293246952 cites W3112951420 @default.
- W4293246952 cites W3118423219 @default.
- W4293246952 cites W3119655479 @default.
- W4293246952 cites W3125539506 @default.
- W4293246952 cites W3127416413 @default.
- W4293246952 cites W3129250372 @default.
- W4293246952 cites W3134949801 @default.
- W4293246952 cites W3135559472 @default.
- W4293246952 cites W3158529618 @default.
- W4293246952 cites W3161725201 @default.
- W4293246952 cites W3161970973 @default.
- W4293246952 cites W3165046472 @default.
- W4293246952 cites W3176385969 @default.
- W4293246952 cites W3177828909 @default.
- W4293246952 cites W4200022889 @default.
- W4293246952 cites W4210617107 @default.
- W4293246952 doi "https://doi.org/10.5772/intechopen.104753" @default.
- W4293246952 hasPublicationYear "2022" @default.
- W4293246952 type Work @default.
- W4293246952 citedByCount "1" @default.
- W4293246952 countsByYear W42932469522023 @default.
- W4293246952 crossrefType "book-chapter" @default.
- W4293246952 hasAuthorship W4293246952A5000116814 @default.
- W4293246952 hasAuthorship W4293246952A5027553529 @default.
- W4293246952 hasAuthorship W4293246952A5030355052 @default.
- W4293246952 hasAuthorship W4293246952A5082030725 @default.
- W4293246952 hasBestOaLocation W42932469521 @default.
- W4293246952 hasConcept C119857082 @default.
- W4293246952 hasConcept C154945302 @default.
- W4293246952 hasConcept C2779308522 @default.
- W4293246952 hasConcept C2780035454 @default.
- W4293246952 hasConcept C31972630 @default.
- W4293246952 hasConcept C41008148 @default.
- W4293246952 hasConcept C60644358 @default.
- W4293246952 hasConcept C64903051 @default.
- W4293246952 hasConcept C71924100 @default.
- W4293246952 hasConcept C74187038 @default.
- W4293246952 hasConcept C86803240 @default.
- W4293246952 hasConcept C98274493 @default.
- W4293246952 hasConceptScore W4293246952C119857082 @default.
- W4293246952 hasConceptScore W4293246952C154945302 @default.
- W4293246952 hasConceptScore W4293246952C2779308522 @default.
- W4293246952 hasConceptScore W4293246952C2780035454 @default.
- W4293246952 hasConceptScore W4293246952C31972630 @default.
- W4293246952 hasConceptScore W4293246952C41008148 @default.
- W4293246952 hasConceptScore W4293246952C60644358 @default.
- W4293246952 hasConceptScore W4293246952C64903051 @default.
- W4293246952 hasConceptScore W4293246952C71924100 @default.
- W4293246952 hasConceptScore W4293246952C74187038 @default.
- W4293246952 hasConceptScore W4293246952C86803240 @default.
- W4293246952 hasConceptScore W4293246952C98274493 @default.
- W4293246952 hasLocation W42932469521 @default.
- W4293246952 hasOpenAccess W4293246952 @default.
- W4293246952 hasPrimaryLocation W42932469521 @default.
- W4293246952 hasRelatedWork W1539704186 @default.
- W4293246952 hasRelatedWork W1585256759 @default.
- W4293246952 hasRelatedWork W2127264463 @default.
- W4293246952 hasRelatedWork W2399890175 @default.
- W4293246952 hasRelatedWork W2480493049 @default.
- W4293246952 hasRelatedWork W3164924009 @default.
- W4293246952 hasRelatedWork W3202479762 @default.