Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293248234> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4293248234 endingPage "125020" @default.
- W4293248234 startingPage "125020" @default.
- W4293248234 abstract "Abstract In practical applications, it is difficult to obtain enough fault samples to train a fault classification model for rolling bearings, and the specifications of bearings used in different mechanical equipment may be different. The diagnosis model trained on a certain specification of bearing may not be applicable to another specification. To solve the above problems, a few-shot rolling bearing fault classification method is proposed, based on an improved relation network (RN). First, a Fourier transform is applied to the vibration signals of different specifications of bearings. The data from different specifications are divided into a meta-train set and a meta-test set according to the meta-learning training strategy, and each set is further divided into a support set and a query set. Second, an improved RN is built. The residual shrinkage module and the scaled exponential linear unit activation function are introduced into the embedding module of the RN. The improved embedding module is used to extract the sample features of the support set and query set, and then the features of the two are combined and input into the relation module to get the relation score. The query set samples are classified according to the score. Finally, the rolling bearing fault classification model is obtained after multiple episodes. The experimental results show that, compared with the partial transfer learning and meta-learning methods, the proposed method only needs a few or even a single sample to achieve the fault classification of different specifications of rolling bearings under different loads. In the case of one-shot, the average classification accuracy can reach 93.3%." @default.
- W4293248234 created "2022-08-27" @default.
- W4293248234 creator A5013563494 @default.
- W4293248234 creator A5029506014 @default.
- W4293248234 creator A5040480732 @default.
- W4293248234 creator A5069614972 @default.
- W4293248234 creator A5072579472 @default.
- W4293248234 creator A5089938045 @default.
- W4293248234 date "2022-09-28" @default.
- W4293248234 modified "2023-10-16" @default.
- W4293248234 title "Few-shot rolling bearing fault classification method based on improved relation network" @default.
- W4293248234 cites W2145680191 @default.
- W4293248234 cites W2791694051 @default.
- W4293248234 cites W2888337213 @default.
- W4293248234 cites W2890288678 @default.
- W4293248234 cites W2898760173 @default.
- W4293248234 cites W2907541186 @default.
- W4293248234 cites W2921717016 @default.
- W4293248234 cites W2964105864 @default.
- W4293248234 cites W2977117446 @default.
- W4293248234 cites W2998506103 @default.
- W4293248234 cites W3000277878 @default.
- W4293248234 cites W3016874985 @default.
- W4293248234 cites W3087227514 @default.
- W4293248234 cites W3126446664 @default.
- W4293248234 cites W3128524777 @default.
- W4293248234 cites W3128553897 @default.
- W4293248234 cites W3132422289 @default.
- W4293248234 cites W3137410503 @default.
- W4293248234 cites W3209651137 @default.
- W4293248234 doi "https://doi.org/10.1088/1361-6501/ac8ca6" @default.
- W4293248234 hasPublicationYear "2022" @default.
- W4293248234 type Work @default.
- W4293248234 citedByCount "1" @default.
- W4293248234 countsByYear W42932482342023 @default.
- W4293248234 crossrefType "journal-article" @default.
- W4293248234 hasAuthorship W4293248234A5013563494 @default.
- W4293248234 hasAuthorship W4293248234A5029506014 @default.
- W4293248234 hasAuthorship W4293248234A5040480732 @default.
- W4293248234 hasAuthorship W4293248234A5069614972 @default.
- W4293248234 hasAuthorship W4293248234A5072579472 @default.
- W4293248234 hasAuthorship W4293248234A5089938045 @default.
- W4293248234 hasConcept C11413529 @default.
- W4293248234 hasConcept C124101348 @default.
- W4293248234 hasConcept C127313418 @default.
- W4293248234 hasConcept C153180895 @default.
- W4293248234 hasConcept C154945302 @default.
- W4293248234 hasConcept C155512373 @default.
- W4293248234 hasConcept C165205528 @default.
- W4293248234 hasConcept C175551986 @default.
- W4293248234 hasConcept C177264268 @default.
- W4293248234 hasConcept C185592680 @default.
- W4293248234 hasConcept C198531522 @default.
- W4293248234 hasConcept C199360897 @default.
- W4293248234 hasConcept C199978012 @default.
- W4293248234 hasConcept C25343380 @default.
- W4293248234 hasConcept C41008148 @default.
- W4293248234 hasConcept C41608201 @default.
- W4293248234 hasConcept C43617362 @default.
- W4293248234 hasConceptScore W4293248234C11413529 @default.
- W4293248234 hasConceptScore W4293248234C124101348 @default.
- W4293248234 hasConceptScore W4293248234C127313418 @default.
- W4293248234 hasConceptScore W4293248234C153180895 @default.
- W4293248234 hasConceptScore W4293248234C154945302 @default.
- W4293248234 hasConceptScore W4293248234C155512373 @default.
- W4293248234 hasConceptScore W4293248234C165205528 @default.
- W4293248234 hasConceptScore W4293248234C175551986 @default.
- W4293248234 hasConceptScore W4293248234C177264268 @default.
- W4293248234 hasConceptScore W4293248234C185592680 @default.
- W4293248234 hasConceptScore W4293248234C198531522 @default.
- W4293248234 hasConceptScore W4293248234C199360897 @default.
- W4293248234 hasConceptScore W4293248234C199978012 @default.
- W4293248234 hasConceptScore W4293248234C25343380 @default.
- W4293248234 hasConceptScore W4293248234C41008148 @default.
- W4293248234 hasConceptScore W4293248234C41608201 @default.
- W4293248234 hasConceptScore W4293248234C43617362 @default.
- W4293248234 hasFunder F4320321001 @default.
- W4293248234 hasFunder F4320323085 @default.
- W4293248234 hasIssue "12" @default.
- W4293248234 hasLocation W42932482341 @default.
- W4293248234 hasOpenAccess W4293248234 @default.
- W4293248234 hasPrimaryLocation W42932482341 @default.
- W4293248234 hasRelatedWork W2365528051 @default.
- W4293248234 hasRelatedWork W2593428261 @default.
- W4293248234 hasRelatedWork W2973451922 @default.
- W4293248234 hasRelatedWork W3094412894 @default.
- W4293248234 hasRelatedWork W3107474891 @default.
- W4293248234 hasRelatedWork W3124316179 @default.
- W4293248234 hasRelatedWork W3197095571 @default.
- W4293248234 hasRelatedWork W4220795705 @default.
- W4293248234 hasRelatedWork W4287370467 @default.
- W4293248234 hasRelatedWork W4301184459 @default.
- W4293248234 hasVolume "33" @default.
- W4293248234 isParatext "false" @default.
- W4293248234 isRetracted "false" @default.
- W4293248234 workType "article" @default.