Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293252893> ?p ?o ?g. }
- W4293252893 abstract "Applying machine learning strategies to interpret mass spectrometry data has the potential to revolutionize the way in which disease is diagnosed, prognosed, and treated. A persistent and tedious obstacle, however, is relaying mass spectrometry data to the machine learning algorithm. Given the native format and large size of mass spectrometry data files, preprocessing is a critical step. To ameliorate this challenge, we sought to create an easy-to-use, continuous pipeline that runs from data acquisition to the machine learning algorithm. Here, we present a start-to-finish pipeline designed to facilitate supervised and unsupervised classification of mass spectrometry data. The input can be any ESI data set collected by LC-MS or flow injection, and the output is a machine learning ready matrix, in which each row is a feature (an abundance of a particular m/z ), and each column is a sample. This workflow provides automated handling of large mass spectrometry data sets for researchers seeking to implement machine learning strategies but who lack expertise in programming/coding to rapidly format the data. We demonstrate how the pipeline can be used on two different mass spectrometry data sets: 1) ESI-MS of fingerprint lipid compositions acquired by direct infusion and, 2) LC-MS of IgG glycopeptides. This workflow is uncomplicated and provides value via its simplicity and effectiveness." @default.
- W4293252893 created "2022-08-27" @default.
- W4293252893 creator A5037624750 @default.
- W4293252893 creator A5045155023 @default.
- W4293252893 creator A5072903008 @default.
- W4293252893 date "2022-08-23" @default.
- W4293252893 modified "2023-09-26" @default.
- W4293252893 title "Leveraging R (LevR) for fast processing of mass spectrometry data and machine learning: Applications analyzing fingerprints and glycopeptides" @default.
- W4293252893 cites W1561871927 @default.
- W4293252893 cites W1850233136 @default.
- W4293252893 cites W1913203953 @default.
- W4293252893 cites W1964010911 @default.
- W4293252893 cites W1981235033 @default.
- W4293252893 cites W2008405632 @default.
- W4293252893 cites W2032917167 @default.
- W4293252893 cites W2100222928 @default.
- W4293252893 cites W2132067355 @default.
- W4293252893 cites W2322607860 @default.
- W4293252893 cites W2460501727 @default.
- W4293252893 cites W2556985017 @default.
- W4293252893 cites W2570672400 @default.
- W4293252893 cites W2581669322 @default.
- W4293252893 cites W2735386783 @default.
- W4293252893 cites W2784629982 @default.
- W4293252893 cites W2794499583 @default.
- W4293252893 cites W2888124865 @default.
- W4293252893 cites W2966966446 @default.
- W4293252893 cites W2971677109 @default.
- W4293252893 cites W2973409925 @default.
- W4293252893 cites W2989925969 @default.
- W4293252893 cites W2990427812 @default.
- W4293252893 cites W2994320314 @default.
- W4293252893 cites W2998052220 @default.
- W4293252893 cites W2998814662 @default.
- W4293252893 cites W3004488852 @default.
- W4293252893 cites W3005654105 @default.
- W4293252893 cites W3012323367 @default.
- W4293252893 cites W3013772284 @default.
- W4293252893 cites W3022528916 @default.
- W4293252893 cites W3031840937 @default.
- W4293252893 cites W3033794693 @default.
- W4293252893 cites W3034396232 @default.
- W4293252893 cites W3098031129 @default.
- W4293252893 cites W3105514546 @default.
- W4293252893 cites W3112906678 @default.
- W4293252893 cites W3127129390 @default.
- W4293252893 cites W3135227811 @default.
- W4293252893 cites W3159721540 @default.
- W4293252893 cites W4244946271 @default.
- W4293252893 cites W4254687493 @default.
- W4293252893 doi "https://doi.org/10.3389/frans.2022.961592" @default.
- W4293252893 hasPublicationYear "2022" @default.
- W4293252893 type Work @default.
- W4293252893 citedByCount "1" @default.
- W4293252893 countsByYear W42932528932023 @default.
- W4293252893 crossrefType "journal-article" @default.
- W4293252893 hasAuthorship W4293252893A5037624750 @default.
- W4293252893 hasAuthorship W4293252893A5045155023 @default.
- W4293252893 hasAuthorship W4293252893A5072903008 @default.
- W4293252893 hasBestOaLocation W42932528931 @default.
- W4293252893 hasConcept C10551718 @default.
- W4293252893 hasConcept C119857082 @default.
- W4293252893 hasConcept C124101348 @default.
- W4293252893 hasConcept C138827492 @default.
- W4293252893 hasConcept C154945302 @default.
- W4293252893 hasConcept C162356407 @default.
- W4293252893 hasConcept C177212765 @default.
- W4293252893 hasConcept C185592680 @default.
- W4293252893 hasConcept C199360897 @default.
- W4293252893 hasConcept C34736171 @default.
- W4293252893 hasConcept C41008148 @default.
- W4293252893 hasConcept C43521106 @default.
- W4293252893 hasConcept C43617362 @default.
- W4293252893 hasConcept C77088390 @default.
- W4293252893 hasConceptScore W4293252893C10551718 @default.
- W4293252893 hasConceptScore W4293252893C119857082 @default.
- W4293252893 hasConceptScore W4293252893C124101348 @default.
- W4293252893 hasConceptScore W4293252893C138827492 @default.
- W4293252893 hasConceptScore W4293252893C154945302 @default.
- W4293252893 hasConceptScore W4293252893C162356407 @default.
- W4293252893 hasConceptScore W4293252893C177212765 @default.
- W4293252893 hasConceptScore W4293252893C185592680 @default.
- W4293252893 hasConceptScore W4293252893C199360897 @default.
- W4293252893 hasConceptScore W4293252893C34736171 @default.
- W4293252893 hasConceptScore W4293252893C41008148 @default.
- W4293252893 hasConceptScore W4293252893C43521106 @default.
- W4293252893 hasConceptScore W4293252893C43617362 @default.
- W4293252893 hasConceptScore W4293252893C77088390 @default.
- W4293252893 hasFunder F4320310131 @default.
- W4293252893 hasLocation W42932528931 @default.
- W4293252893 hasOpenAccess W4293252893 @default.
- W4293252893 hasPrimaryLocation W42932528931 @default.
- W4293252893 hasRelatedWork W1512802664 @default.
- W4293252893 hasRelatedWork W2367545121 @default.
- W4293252893 hasRelatedWork W2373749036 @default.
- W4293252893 hasRelatedWork W2380234485 @default.
- W4293252893 hasRelatedWork W2899307613 @default.
- W4293252893 hasRelatedWork W2952736244 @default.
- W4293252893 hasRelatedWork W3092506759 @default.
- W4293252893 hasRelatedWork W4248881655 @default.