Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293335334> ?p ?o ?g. }
- W4293335334 endingPage "11450" @default.
- W4293335334 startingPage "11435" @default.
- W4293335334 abstract "Abstract Gestational diabetes mellitus (GDM) is one of the pregnancy complications that endangers both mothers and babies. GDM is usually diagnosed at 22–26 weeks of gestation. However, early prediction is preferable because it may decrease the risk. The continuous monitoring of the mother’s vital signs helps in predicting any deterioration during pregnancy. The originality of this research is to provide a comprehensive framework for pregnancy women monitoring. The proposed Data Replacement and Prediction Framework consists of three layers, which are: (i) Internet of things (IoT) Layer, (ii) Fog Layer, and (iii) Cloud Layer. The first layer used IoT sensors to aggregate vital signs from pregnancies using invasive and non-invasive sensors. The vital signs are then transmitted to fog nodes to be processed and finally stored in the cloud layer. The main contribution in this research is located in the fog layer producing the GDM module to implement two influential tasks which are as follows: (i) Data Finding Methodology (DFM), and (ii) Explainable Prediction Algorithm (EPM) using DNN. First, the DFM is used to replace the unused data to free up the cache space for new incoming data items. The cache replacement is very important in the case of the healthcare system as the incoming vital signs are frequent and must be replaced continuously. Second, the EPM is used to predict the occurrence of GDM in the second trimester of the pregnancy. To evaluate our model, we extracted data from 16,354 pregnant women from the medical information mart for intensive care (MIMIC III) benchmark dataset. For each woman, vital signs, demographic data, and laboratory tests were aggregated. The results of the prediction model are superior to the state-of-the-art (ACC = 0.957, AUC = 0.942). Regarding explainability, we used Shapley additive explanation (SHAP) framework to provide local and global explanations for the developed models. Overall, the proposed framework is medically intuitive and allows the early prediction of GDM with a cost-effective solution." @default.
- W4293335334 created "2022-08-27" @default.
- W4293335334 creator A5007628561 @default.
- W4293335334 creator A5016556872 @default.
- W4293335334 creator A5037222998 @default.
- W4293335334 creator A5050567281 @default.
- W4293335334 date "2022-08-27" @default.
- W4293335334 modified "2023-10-14" @default.
- W4293335334 title "RETRACTED ARTICLE: Prediction of gestational diabetes based on explainable deep learning and fog computing" @default.
- W4293335334 cites W1583423426 @default.
- W4293335334 cites W1974705751 @default.
- W4293335334 cites W1985690171 @default.
- W4293335334 cites W1998358364 @default.
- W4293335334 cites W2013018500 @default.
- W4293335334 cites W2022014971 @default.
- W4293335334 cites W2034640205 @default.
- W4293335334 cites W2045371716 @default.
- W4293335334 cites W2082981740 @default.
- W4293335334 cites W2092911317 @default.
- W4293335334 cites W2114623221 @default.
- W4293335334 cites W2122966699 @default.
- W4293335334 cites W2133506114 @default.
- W4293335334 cites W2135320406 @default.
- W4293335334 cites W2166996912 @default.
- W4293335334 cites W2255104527 @default.
- W4293335334 cites W2291963856 @default.
- W4293335334 cites W2294261868 @default.
- W4293335334 cites W2300687008 @default.
- W4293335334 cites W2342144339 @default.
- W4293335334 cites W2396881363 @default.
- W4293335334 cites W2551600225 @default.
- W4293335334 cites W2564801002 @default.
- W4293335334 cites W2615777654 @default.
- W4293335334 cites W2748667071 @default.
- W4293335334 cites W2758648442 @default.
- W4293335334 cites W2761065987 @default.
- W4293335334 cites W2764165920 @default.
- W4293335334 cites W2769286440 @default.
- W4293335334 cites W2790895699 @default.
- W4293335334 cites W2796447772 @default.
- W4293335334 cites W2900206120 @default.
- W4293335334 cites W2908062660 @default.
- W4293335334 cites W2908590195 @default.
- W4293335334 cites W2913240367 @default.
- W4293335334 cites W2914288193 @default.
- W4293335334 cites W2922264503 @default.
- W4293335334 cites W2972243540 @default.
- W4293335334 cites W2987450281 @default.
- W4293335334 cites W2999132755 @default.
- W4293335334 cites W3006104596 @default.
- W4293335334 cites W3007543796 @default.
- W4293335334 cites W3010260447 @default.
- W4293335334 cites W3011546441 @default.
- W4293335334 cites W3012490873 @default.
- W4293335334 cites W3013264602 @default.
- W4293335334 cites W3016583525 @default.
- W4293335334 cites W3019071715 @default.
- W4293335334 cites W3030115230 @default.
- W4293335334 cites W3033535666 @default.
- W4293335334 cites W3041337932 @default.
- W4293335334 cites W3044427673 @default.
- W4293335334 cites W3045590115 @default.
- W4293335334 cites W3082674629 @default.
- W4293335334 cites W3099622655 @default.
- W4293335334 cites W3115744613 @default.
- W4293335334 cites W3122678989 @default.
- W4293335334 cites W3125069671 @default.
- W4293335334 cites W3127107489 @default.
- W4293335334 cites W3128509427 @default.
- W4293335334 cites W3151989229 @default.
- W4293335334 cites W3155200702 @default.
- W4293335334 cites W3164567241 @default.
- W4293335334 cites W3170322526 @default.
- W4293335334 cites W3176814876 @default.
- W4293335334 cites W3179164182 @default.
- W4293335334 cites W3198107793 @default.
- W4293335334 cites W3213772546 @default.
- W4293335334 cites W4241727697 @default.
- W4293335334 cites W4250321094 @default.
- W4293335334 doi "https://doi.org/10.1007/s00500-022-07420-1" @default.
- W4293335334 hasPublicationYear "2022" @default.
- W4293335334 type Work @default.
- W4293335334 citedByCount "9" @default.
- W4293335334 countsByYear W42933353342023 @default.
- W4293335334 crossrefType "journal-article" @default.
- W4293335334 hasAuthorship W4293335334A5007628561 @default.
- W4293335334 hasAuthorship W4293335334A5016556872 @default.
- W4293335334 hasAuthorship W4293335334A5037222998 @default.
- W4293335334 hasAuthorship W4293335334A5050567281 @default.
- W4293335334 hasBestOaLocation W42933353341 @default.
- W4293335334 hasConcept C111919701 @default.
- W4293335334 hasConcept C115537543 @default.
- W4293335334 hasConcept C141071460 @default.
- W4293335334 hasConcept C2776890885 @default.
- W4293335334 hasConcept C2779234561 @default.
- W4293335334 hasConcept C2779434492 @default.
- W4293335334 hasConcept C41008148 @default.
- W4293335334 hasConcept C46973012 @default.