Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293339411> ?p ?o ?g. }
- W4293339411 endingPage "30" @default.
- W4293339411 startingPage "20" @default.
- W4293339411 abstract "Rapid determination of moisture content plays an important role in guiding the recycling, treatment and disposal of solid waste, as the moisture content of solid waste directly affects the leachate generation, microbial activities, pollutants leaching and energy consumption during thermal treatment. Traditional moisture content measurement methods are time-consuming, cumbersome and destructive to samples. Therefore, a rapid and nondestructive method for determining the moisture content of solid waste has become a key technology. In this work, an attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and multiple machine learning methods was developed to predict the moisture content of multi-source solid waste (textile, paper, leather and wood waste). A combined model was proposed for moisture content regression prediction, and the applicability of 20 combinations of five spectral preprocessing methods and four regression algorithms were discussed to further improve the modeling accuracy. Furthermore, the prediction result based on the water-band spectra was compared with the prediction result based on the full-band spectra. The result showed that the combination model can efficiently predict the moisture content of multi-source solid waste, and the R2 values of the validation and test datasets and the root mean square error for the moisture prediction reached 0.9604, 0.9660, and 3.80, respectively after the hyperparameter optimization. The excellent performance indicated that the proposed combined models can rapidly and accurately measure the moisture content of solid waste, which is significant for the existing waste characterization scheme, and for the further real-time monitoring and management of solid waste treatment and disposal process." @default.
- W4293339411 created "2022-08-27" @default.
- W4293339411 creator A5004502768 @default.
- W4293339411 creator A5009815253 @default.
- W4293339411 creator A5026968592 @default.
- W4293339411 creator A5033073898 @default.
- W4293339411 creator A5044558041 @default.
- W4293339411 creator A5056450584 @default.
- W4293339411 date "2022-11-01" @default.
- W4293339411 modified "2023-10-09" @default.
- W4293339411 title "Rapid determination of moisture content of multi-source solid waste using ATR-FTIR and multiple machine learning methods" @default.
- W4293339411 cites W1982755765 @default.
- W4293339411 cites W1986199889 @default.
- W4293339411 cites W1986902094 @default.
- W4293339411 cites W1991277158 @default.
- W4293339411 cites W1997986423 @default.
- W4293339411 cites W2025309147 @default.
- W4293339411 cites W2032937972 @default.
- W4293339411 cites W2037460094 @default.
- W4293339411 cites W2038671466 @default.
- W4293339411 cites W2046612965 @default.
- W4293339411 cites W2047472152 @default.
- W4293339411 cites W2050605378 @default.
- W4293339411 cites W2073309755 @default.
- W4293339411 cites W2083908570 @default.
- W4293339411 cites W2087072823 @default.
- W4293339411 cites W2087959251 @default.
- W4293339411 cites W2114886598 @default.
- W4293339411 cites W2216946510 @default.
- W4293339411 cites W2319160967 @default.
- W4293339411 cites W2399675776 @default.
- W4293339411 cites W2466804278 @default.
- W4293339411 cites W2468213734 @default.
- W4293339411 cites W2499576016 @default.
- W4293339411 cites W2551893398 @default.
- W4293339411 cites W2599937362 @default.
- W4293339411 cites W2750022363 @default.
- W4293339411 cites W2773146783 @default.
- W4293339411 cites W2781908219 @default.
- W4293339411 cites W2792798456 @default.
- W4293339411 cites W2799462250 @default.
- W4293339411 cites W2907771707 @default.
- W4293339411 cites W2911893501 @default.
- W4293339411 cites W2914431667 @default.
- W4293339411 cites W2920531641 @default.
- W4293339411 cites W2927291689 @default.
- W4293339411 cites W2949249259 @default.
- W4293339411 cites W2953594546 @default.
- W4293339411 cites W2966666410 @default.
- W4293339411 cites W2968741061 @default.
- W4293339411 cites W2979490443 @default.
- W4293339411 cites W2979539276 @default.
- W4293339411 cites W2980961485 @default.
- W4293339411 cites W2988966335 @default.
- W4293339411 cites W2990054270 @default.
- W4293339411 cites W2998157015 @default.
- W4293339411 cites W3093016721 @default.
- W4293339411 cites W3107774068 @default.
- W4293339411 cites W3122481154 @default.
- W4293339411 cites W3128308159 @default.
- W4293339411 cites W3158771820 @default.
- W4293339411 cites W3172157850 @default.
- W4293339411 cites W3174645338 @default.
- W4293339411 cites W3175247180 @default.
- W4293339411 cites W3194081221 @default.
- W4293339411 cites W3201847245 @default.
- W4293339411 doi "https://doi.org/10.1016/j.wasman.2022.08.014" @default.
- W4293339411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36041267" @default.
- W4293339411 hasPublicationYear "2022" @default.
- W4293339411 type Work @default.
- W4293339411 citedByCount "5" @default.
- W4293339411 countsByYear W42933394112023 @default.
- W4293339411 crossrefType "journal-article" @default.
- W4293339411 hasAuthorship W4293339411A5004502768 @default.
- W4293339411 hasAuthorship W4293339411A5009815253 @default.
- W4293339411 hasAuthorship W4293339411A5026968592 @default.
- W4293339411 hasAuthorship W4293339411A5033073898 @default.
- W4293339411 hasAuthorship W4293339411A5044558041 @default.
- W4293339411 hasAuthorship W4293339411A5056450584 @default.
- W4293339411 hasBestOaLocation W42933394111 @default.
- W4293339411 hasConcept C127413603 @default.
- W4293339411 hasConcept C159985019 @default.
- W4293339411 hasConcept C160892712 @default.
- W4293339411 hasConcept C16925390 @default.
- W4293339411 hasConcept C176864760 @default.
- W4293339411 hasConcept C187320778 @default.
- W4293339411 hasConcept C192562407 @default.
- W4293339411 hasConcept C21880701 @default.
- W4293339411 hasConcept C24939127 @default.
- W4293339411 hasConcept C2779123245 @default.
- W4293339411 hasConcept C2779227376 @default.
- W4293339411 hasConcept C39432304 @default.
- W4293339411 hasConcept C42360764 @default.
- W4293339411 hasConcept C548081761 @default.
- W4293339411 hasConcept C75779659 @default.
- W4293339411 hasConceptScore W4293339411C127413603 @default.
- W4293339411 hasConceptScore W4293339411C159985019 @default.
- W4293339411 hasConceptScore W4293339411C160892712 @default.