Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293340419> ?p ?o ?g. }
- W4293340419 endingPage "4745" @default.
- W4293340419 startingPage "4733" @default.
- W4293340419 abstract "Detection and Classification of a brain tumor is an important step to better understanding its mechanism. Magnetic Reasoning Imaging (MRI) is an experimental medical imaging technique that helps the radiologist find the tumor region. However, it is a time taking process and requires expertise to test the MRI images, manually. Nowadays, the advancement of Computer-assisted Diagnosis (CAD), machine learning, and deep learning in specific allow the radiologist to more reliably identify brain tumors. The traditional machine learning methods used to tackle this problem require a handcrafted feature for classification purposes. Whereas deep learning methods can be designed in a way to not require any handcrafted feature extraction while achieving accurate classification results. This paper proposes two deep learning models to identify both binary (normal and abnormal) and multiclass (meningioma, glioma, and pituitary) brain tumors. We use two publicly available datasets that include 3064 and 152 MRI images, respectively. To build our models, we first apply a 23-layers convolution neural network (CNN) to the first dataset since there is a large number of MRI images for the training purpose. However, when dealing with limited volumes of data, which is the case in the second dataset, our proposed 23-layers CNN architecture faces overfitting problem. To address this issue, we use transfer learning and combine VGG16 architecture along with the reflection of our proposed 23 layers CNN architecture. Finally, we compare our proposed models with those reported in the literature. Our experimental results indicate that our models achieve up to 97.8% and 100% classification accuracy for our employed datasets, respectively, exceeding all other state-of-the-art models. Our proposed models, employed datasets, and all the source codes are publicly available at: (https://github.com/saikat15010/Brain-Tumor-Detection)." @default.
- W4293340419 created "2022-08-27" @default.
- W4293340419 creator A5021825303 @default.
- W4293340419 creator A5035000135 @default.
- W4293340419 creator A5036604456 @default.
- W4293340419 creator A5037815011 @default.
- W4293340419 creator A5070185515 @default.
- W4293340419 creator A5072851920 @default.
- W4293340419 creator A5078963401 @default.
- W4293340419 creator A5080737790 @default.
- W4293340419 date "2022-01-01" @default.
- W4293340419 modified "2023-10-17" @default.
- W4293340419 title "Accurate brain tumor detection using deep convolutional neural network" @default.
- W4293340419 cites W2017896827 @default.
- W4293340419 cites W2075710390 @default.
- W4293340419 cites W2085548158 @default.
- W4293340419 cites W2098341282 @default.
- W4293340419 cites W2112796928 @default.
- W4293340419 cites W2182098131 @default.
- W4293340419 cites W2253429366 @default.
- W4293340419 cites W2366536035 @default.
- W4293340419 cites W2470130773 @default.
- W4293340419 cites W2500827222 @default.
- W4293340419 cites W2511125885 @default.
- W4293340419 cites W2540130004 @default.
- W4293340419 cites W2553647727 @default.
- W4293340419 cites W2556239502 @default.
- W4293340419 cites W2594020746 @default.
- W4293340419 cites W2751723768 @default.
- W4293340419 cites W2754210552 @default.
- W4293340419 cites W2791575870 @default.
- W4293340419 cites W2802611745 @default.
- W4293340419 cites W2810138651 @default.
- W4293340419 cites W2885033426 @default.
- W4293340419 cites W2896336032 @default.
- W4293340419 cites W2897188827 @default.
- W4293340419 cites W2901051598 @default.
- W4293340419 cites W2905017682 @default.
- W4293340419 cites W2906302663 @default.
- W4293340419 cites W2945839551 @default.
- W4293340419 cites W2945980668 @default.
- W4293340419 cites W2947735999 @default.
- W4293340419 cites W2959645102 @default.
- W4293340419 cites W2963108767 @default.
- W4293340419 cites W2995683363 @default.
- W4293340419 cites W2998401461 @default.
- W4293340419 cites W3118101189 @default.
- W4293340419 cites W3127167602 @default.
- W4293340419 cites W3134696414 @default.
- W4293340419 cites W3140323468 @default.
- W4293340419 cites W3153436803 @default.
- W4293340419 cites W3159670968 @default.
- W4293340419 cites W3191820337 @default.
- W4293340419 cites W3193713472 @default.
- W4293340419 cites W4205432032 @default.
- W4293340419 cites W4205964412 @default.
- W4293340419 cites W4224291389 @default.
- W4293340419 cites W4244344354 @default.
- W4293340419 doi "https://doi.org/10.1016/j.csbj.2022.08.039" @default.
- W4293340419 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36147663" @default.
- W4293340419 hasPublicationYear "2022" @default.
- W4293340419 type Work @default.
- W4293340419 citedByCount "22" @default.
- W4293340419 countsByYear W42933404192023 @default.
- W4293340419 crossrefType "journal-article" @default.
- W4293340419 hasAuthorship W4293340419A5021825303 @default.
- W4293340419 hasAuthorship W4293340419A5035000135 @default.
- W4293340419 hasAuthorship W4293340419A5036604456 @default.
- W4293340419 hasAuthorship W4293340419A5037815011 @default.
- W4293340419 hasAuthorship W4293340419A5070185515 @default.
- W4293340419 hasAuthorship W4293340419A5072851920 @default.
- W4293340419 hasAuthorship W4293340419A5078963401 @default.
- W4293340419 hasAuthorship W4293340419A5080737790 @default.
- W4293340419 hasBestOaLocation W42933404191 @default.
- W4293340419 hasConcept C108583219 @default.
- W4293340419 hasConcept C111919701 @default.
- W4293340419 hasConcept C115961682 @default.
- W4293340419 hasConcept C119857082 @default.
- W4293340419 hasConcept C12267149 @default.
- W4293340419 hasConcept C138885662 @default.
- W4293340419 hasConcept C150899416 @default.
- W4293340419 hasConcept C153180895 @default.
- W4293340419 hasConcept C154945302 @default.
- W4293340419 hasConcept C22019652 @default.
- W4293340419 hasConcept C2776401178 @default.
- W4293340419 hasConcept C41008148 @default.
- W4293340419 hasConcept C41895202 @default.
- W4293340419 hasConcept C50644808 @default.
- W4293340419 hasConcept C52622490 @default.
- W4293340419 hasConcept C66905080 @default.
- W4293340419 hasConcept C75294576 @default.
- W4293340419 hasConcept C81363708 @default.
- W4293340419 hasConcept C98045186 @default.
- W4293340419 hasConceptScore W4293340419C108583219 @default.
- W4293340419 hasConceptScore W4293340419C111919701 @default.
- W4293340419 hasConceptScore W4293340419C115961682 @default.
- W4293340419 hasConceptScore W4293340419C119857082 @default.
- W4293340419 hasConceptScore W4293340419C12267149 @default.