Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293378889> ?p ?o ?g. }
- W4293378889 endingPage "252" @default.
- W4293378889 startingPage "243" @default.
- W4293378889 abstract "To develop deep learning models for annualized geographic atrophy (GA) growth rate prediction using fundus autofluorescence (FAF) images and spectral-domain OCT volumes from baseline visits, which can be used for prognostic covariate adjustment to increase power of clinical trials. This retrospective analysis estimated GA growth rate as the slope of a linear fit on all available measurements of lesion area over a 2-year period. Three multitask deep learning models–FAF-only, OCT-only, and multimodal (FAF and OCT)–were developed to predict concurrent GA area and annualized growth rate. Patients were from prospective and observational lampalizumab clinical trials. The 3 models were trained on the development data set, tested on the holdout set, and further evaluated on the independent test sets. Baseline FAF images and OCT volumes from study eyes of patients with bilateral GA (NCT02247479; NCT02247531; and NCT02479386) were split into development (1279 patients/eyes) and holdout (443 patients/eyes) sets. Baseline FAF images from study eyes of NCT01229215 (106 patients/eyes) and NCT02399072 (169 patients/eyes) were used as independent test sets. Model performance was evaluated using squared Pearson correlation coefficient (r2) between observed and predicted lesion areas/growth rates. Confidence intervals were calculated by bootstrap resampling (B = 10 000). On the holdout data set, r2 (95% confidence interval) of the FAF-only, OCT-only, and multimodal models for GA lesion area prediction was 0.96 (0.95–0.97), 0.91 (0.87–0.95), and 0.94 (0.92–0.96), respectively, and for GA growth rate prediction was 0.48 (0.41–0.55), 0.36 (0.29–0.43), and 0.47 (0.40–0.54), respectively. On the 2 independent test sets, r2 of the FAF-only model for GA lesion area was 0.98 (0.97–0.99) and 0.95 (0.93–0.96), and for GA growth rate was 0.65 (0.52–0.75) and 0.47 (0.34–0.60). We show the feasibility of using baseline FAF images and OCT volumes to predict individual GA area and growth rates using a multitask deep learning approach. The deep learning–based growth rate predictions could be used for covariate adjustment to increase power of clinical trials. Proprietary or commercial disclosure may be found after the references." @default.
- W4293378889 created "2022-08-28" @default.
- W4293378889 creator A5006688727 @default.
- W4293378889 creator A5014881844 @default.
- W4293378889 creator A5016922490 @default.
- W4293378889 creator A5018957764 @default.
- W4293378889 creator A5019761198 @default.
- W4293378889 creator A5024864608 @default.
- W4293378889 creator A5028983146 @default.
- W4293378889 creator A5030619198 @default.
- W4293378889 creator A5040033719 @default.
- W4293378889 creator A5059501787 @default.
- W4293378889 creator A5059541679 @default.
- W4293378889 creator A5060843606 @default.
- W4293378889 creator A5090428050 @default.
- W4293378889 creator A5091515666 @default.
- W4293378889 date "2023-03-01" @default.
- W4293378889 modified "2023-10-14" @default.
- W4293378889 title "Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging" @default.
- W4293378889 cites W1970134158 @default.
- W4293378889 cites W1980901981 @default.
- W4293378889 cites W2012372812 @default.
- W4293378889 cites W2095521577 @default.
- W4293378889 cites W2111379072 @default.
- W4293378889 cites W2150030086 @default.
- W4293378889 cites W2401288801 @default.
- W4293378889 cites W2414031461 @default.
- W4293378889 cites W2558511977 @default.
- W4293378889 cites W2575549046 @default.
- W4293378889 cites W2619932586 @default.
- W4293378889 cites W2672043438 @default.
- W4293378889 cites W2734589495 @default.
- W4293378889 cites W2748339371 @default.
- W4293378889 cites W2765808721 @default.
- W4293378889 cites W2766820003 @default.
- W4293378889 cites W2802822211 @default.
- W4293378889 cites W2803988127 @default.
- W4293378889 cites W2847659972 @default.
- W4293378889 cites W2907473213 @default.
- W4293378889 cites W2940442701 @default.
- W4293378889 cites W2996058305 @default.
- W4293378889 cites W3005554025 @default.
- W4293378889 cites W3048958222 @default.
- W4293378889 cites W3102506366 @default.
- W4293378889 cites W3102564565 @default.
- W4293378889 cites W3111675991 @default.
- W4293378889 cites W3134369163 @default.
- W4293378889 cites W2746359442 @default.
- W4293378889 doi "https://doi.org/10.1016/j.oret.2022.08.018" @default.
- W4293378889 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36038116" @default.
- W4293378889 hasPublicationYear "2023" @default.
- W4293378889 type Work @default.
- W4293378889 citedByCount "5" @default.
- W4293378889 countsByYear W42933788892023 @default.
- W4293378889 crossrefType "journal-article" @default.
- W4293378889 hasAuthorship W4293378889A5006688727 @default.
- W4293378889 hasAuthorship W4293378889A5014881844 @default.
- W4293378889 hasAuthorship W4293378889A5016922490 @default.
- W4293378889 hasAuthorship W4293378889A5018957764 @default.
- W4293378889 hasAuthorship W4293378889A5019761198 @default.
- W4293378889 hasAuthorship W4293378889A5024864608 @default.
- W4293378889 hasAuthorship W4293378889A5028983146 @default.
- W4293378889 hasAuthorship W4293378889A5030619198 @default.
- W4293378889 hasAuthorship W4293378889A5040033719 @default.
- W4293378889 hasAuthorship W4293378889A5059501787 @default.
- W4293378889 hasAuthorship W4293378889A5059541679 @default.
- W4293378889 hasAuthorship W4293378889A5060843606 @default.
- W4293378889 hasAuthorship W4293378889A5090428050 @default.
- W4293378889 hasAuthorship W4293378889A5091515666 @default.
- W4293378889 hasBestOaLocation W42933788891 @default.
- W4293378889 hasConcept C105795698 @default.
- W4293378889 hasConcept C118487528 @default.
- W4293378889 hasConcept C119043178 @default.
- W4293378889 hasConcept C126322002 @default.
- W4293378889 hasConcept C2776403814 @default.
- W4293378889 hasConcept C2989005 @default.
- W4293378889 hasConcept C2991880128 @default.
- W4293378889 hasConcept C33923547 @default.
- W4293378889 hasConcept C44249647 @default.
- W4293378889 hasConcept C71924100 @default.
- W4293378889 hasConceptScore W4293378889C105795698 @default.
- W4293378889 hasConceptScore W4293378889C118487528 @default.
- W4293378889 hasConceptScore W4293378889C119043178 @default.
- W4293378889 hasConceptScore W4293378889C126322002 @default.
- W4293378889 hasConceptScore W4293378889C2776403814 @default.
- W4293378889 hasConceptScore W4293378889C2989005 @default.
- W4293378889 hasConceptScore W4293378889C2991880128 @default.
- W4293378889 hasConceptScore W4293378889C33923547 @default.
- W4293378889 hasConceptScore W4293378889C44249647 @default.
- W4293378889 hasConceptScore W4293378889C71924100 @default.
- W4293378889 hasIssue "3" @default.
- W4293378889 hasLocation W42933788891 @default.
- W4293378889 hasLocation W42933788892 @default.
- W4293378889 hasOpenAccess W4293378889 @default.
- W4293378889 hasPrimaryLocation W42933788891 @default.
- W4293378889 hasRelatedWork W1993125394 @default.
- W4293378889 hasRelatedWork W2072196024 @default.
- W4293378889 hasRelatedWork W2093562094 @default.