Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293385784> ?p ?o ?g. }
- W4293385784 endingPage "9027" @default.
- W4293385784 startingPage "9011" @default.
- W4293385784 abstract "Mining the best logical rule from the data is a challenging task because not all attribute of the dataset will contribute towards the optimal logical representation. Even if the correct attributes were selected, wrong logical connection in the logical formula will lead to suboptimal logical representation of the datasets. These two factors must be carefully considered in creating more robust logic mining method. In this paper, we proposed a novel logic mining by introducing log-linear analysis to select the best attributes which formulate the logical rule that will be embedded into the energy-based ANN named Discrete Hopfield Neural Network (DHNN). In log-linear phase, the test of the association for each attributes will be carried out where the attributes that have a significant level less than α will be selected before proceeding to the logic mining phase. By using DHNN, the selected attributes via log-linear will be learned and retrieved the optimal induced logic with classification ability. The proposed hybrid model has been tested using various real-life datasets and was compared with several established logic mining methods. Based on the findings, several winning points for the proposed model where the proposed model dominates 3 metrics out of 5 in the average rank. The metrics that achieve the highest average rank are Accuracy (1.800), Precision (3.500), and Mathews Correlation Coefficient (2.700). In accordance with the experimental result obtained, the proposed model has achieved optimal performance with a statistically significant p-value. Hence, these findings lead to an advancement of the existing logic mining via the statistical method." @default.
- W4293385784 created "2022-08-28" @default.
- W4293385784 creator A5027687642 @default.
- W4293385784 creator A5038221850 @default.
- W4293385784 creator A5051758226 @default.
- W4293385784 creator A5058046014 @default.
- W4293385784 creator A5080994145 @default.
- W4293385784 creator A5081762277 @default.
- W4293385784 date "2022-11-01" @default.
- W4293385784 modified "2023-10-05" @default.
- W4293385784 title "Novel logic mining incorporating log linear approach" @default.
- W4293385784 cites W1597286183 @default.
- W4293385784 cites W1963778854 @default.
- W4293385784 cites W2023367191 @default.
- W4293385784 cites W2050442741 @default.
- W4293385784 cites W2146497925 @default.
- W4293385784 cites W2161136893 @default.
- W4293385784 cites W2161780063 @default.
- W4293385784 cites W2885191881 @default.
- W4293385784 cites W2918408501 @default.
- W4293385784 cites W2922930422 @default.
- W4293385784 cites W2989688479 @default.
- W4293385784 cites W2995072003 @default.
- W4293385784 cites W2999309192 @default.
- W4293385784 cites W3017006906 @default.
- W4293385784 cites W3031946898 @default.
- W4293385784 cites W3059040056 @default.
- W4293385784 cites W3092411915 @default.
- W4293385784 cites W3097765205 @default.
- W4293385784 cites W3110893536 @default.
- W4293385784 cites W3122585411 @default.
- W4293385784 cites W3185050929 @default.
- W4293385784 cites W3203170584 @default.
- W4293385784 cites W3208021954 @default.
- W4293385784 cites W4212924770 @default.
- W4293385784 cites W4221027949 @default.
- W4293385784 cites W4221101703 @default.
- W4293385784 cites W4226438888 @default.
- W4293385784 cites W4283385861 @default.
- W4293385784 cites W4285600365 @default.
- W4293385784 cites W917774098 @default.
- W4293385784 doi "https://doi.org/10.1016/j.jksuci.2022.08.026" @default.
- W4293385784 hasPublicationYear "2022" @default.
- W4293385784 type Work @default.
- W4293385784 citedByCount "9" @default.
- W4293385784 countsByYear W42933857842022 @default.
- W4293385784 countsByYear W42933857842023 @default.
- W4293385784 crossrefType "journal-article" @default.
- W4293385784 hasAuthorship W4293385784A5027687642 @default.
- W4293385784 hasAuthorship W4293385784A5038221850 @default.
- W4293385784 hasAuthorship W4293385784A5051758226 @default.
- W4293385784 hasAuthorship W4293385784A5058046014 @default.
- W4293385784 hasAuthorship W4293385784A5080994145 @default.
- W4293385784 hasAuthorship W4293385784A5081762277 @default.
- W4293385784 hasBestOaLocation W42933857841 @default.
- W4293385784 hasConcept C11413529 @default.
- W4293385784 hasConcept C114614502 @default.
- W4293385784 hasConcept C119857082 @default.
- W4293385784 hasConcept C124101348 @default.
- W4293385784 hasConcept C127413603 @default.
- W4293385784 hasConcept C154945302 @default.
- W4293385784 hasConcept C164226766 @default.
- W4293385784 hasConcept C17744445 @default.
- W4293385784 hasConcept C193524817 @default.
- W4293385784 hasConcept C199360897 @default.
- W4293385784 hasConcept C199539241 @default.
- W4293385784 hasConcept C201995342 @default.
- W4293385784 hasConcept C203702819 @default.
- W4293385784 hasConcept C21847791 @default.
- W4293385784 hasConcept C2776359362 @default.
- W4293385784 hasConcept C2780451532 @default.
- W4293385784 hasConcept C33923547 @default.
- W4293385784 hasConcept C41008148 @default.
- W4293385784 hasConcept C50644808 @default.
- W4293385784 hasConcept C67186912 @default.
- W4293385784 hasConcept C77088390 @default.
- W4293385784 hasConcept C94625758 @default.
- W4293385784 hasConceptScore W4293385784C11413529 @default.
- W4293385784 hasConceptScore W4293385784C114614502 @default.
- W4293385784 hasConceptScore W4293385784C119857082 @default.
- W4293385784 hasConceptScore W4293385784C124101348 @default.
- W4293385784 hasConceptScore W4293385784C127413603 @default.
- W4293385784 hasConceptScore W4293385784C154945302 @default.
- W4293385784 hasConceptScore W4293385784C164226766 @default.
- W4293385784 hasConceptScore W4293385784C17744445 @default.
- W4293385784 hasConceptScore W4293385784C193524817 @default.
- W4293385784 hasConceptScore W4293385784C199360897 @default.
- W4293385784 hasConceptScore W4293385784C199539241 @default.
- W4293385784 hasConceptScore W4293385784C201995342 @default.
- W4293385784 hasConceptScore W4293385784C203702819 @default.
- W4293385784 hasConceptScore W4293385784C21847791 @default.
- W4293385784 hasConceptScore W4293385784C2776359362 @default.
- W4293385784 hasConceptScore W4293385784C2780451532 @default.
- W4293385784 hasConceptScore W4293385784C33923547 @default.
- W4293385784 hasConceptScore W4293385784C41008148 @default.
- W4293385784 hasConceptScore W4293385784C50644808 @default.
- W4293385784 hasConceptScore W4293385784C67186912 @default.
- W4293385784 hasConceptScore W4293385784C77088390 @default.