Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293386076> ?p ?o ?g. }
- W4293386076 endingPage "118658" @default.
- W4293386076 startingPage "118658" @default.
- W4293386076 abstract "Crude oil price predictability has continually been considered as a fundamental argument of finance literature, given its critical propositions for risk management, investment decisions, and commercial and financial policymaking. This work presents an innovative learning framework for efficient predictive modeling of daily and weekly crude oil price (COP) information, which aims to enable sustainable management in oil markets. Firstly, an optimized version of variation mode decomposition (OVMD) is proposed to adaptively decompose the original COP time series into multiple modes based on a set of optimized parameters calculated with a Tree-structured Parzen Estimator (TPE) algorithm. Secondly, an AdaBoost algorithm is redesigned using random forest (RF) to model the future price information in the modes with the high frequency. Thirdly, a new deep network is presented to develop automatically learn spatial–temporal representations from decomposed COP data, where a novel Conv-former module is designed to efficiently extract local as well as global spatial representations without incurring extra computational costs. Followingly, Multiple Long short-term Memory (LSTM) networks are stacked to learn temporal representations from input modes. To further empower the representation power of our framework, a new bidirectional learning module is presented to stack the LSTM layer to learn from COP data in the forward and backward directions. To validate the efficiency of the proposed framework, this work performs experimental simulations and analyses based on a case study from Brent crude oil prices at both daily and weekly scales. The experimental findings show up the competent predictive modeling capabilities of the proposed framework over the cutting-edge methods rendering it as a promising solution to enable sustainable management in crude oil markets. The proposed framework can be generalized to different predictive modeling tasks and hence qualified to be used as a valuable tool for oil portfolio creation, property pricing, and risk management in Crude Oil Markets." @default.
- W4293386076 created "2022-08-28" @default.
- W4293386076 creator A5075690391 @default.
- W4293386076 date "2023-01-01" @default.
- W4293386076 modified "2023-09-27" @default.
- W4293386076 title "Deep learning framework for predictive modeling of crude oil price for sustainable management in oil markets" @default.
- W4293386076 cites W1973048907 @default.
- W4293386076 cites W1988790447 @default.
- W4293386076 cites W2000982976 @default.
- W4293386076 cites W2032007607 @default.
- W4293386076 cites W2064675550 @default.
- W4293386076 cites W2095364399 @default.
- W4293386076 cites W2109547008 @default.
- W4293386076 cites W2120390927 @default.
- W4293386076 cites W2143481518 @default.
- W4293386076 cites W2279189882 @default.
- W4293386076 cites W2521607306 @default.
- W4293386076 cites W2622999711 @default.
- W4293386076 cites W2806380219 @default.
- W4293386076 cites W2883812008 @default.
- W4293386076 cites W2898307789 @default.
- W4293386076 cites W2899278391 @default.
- W4293386076 cites W2943544609 @default.
- W4293386076 cites W2948175577 @default.
- W4293386076 cites W2948336928 @default.
- W4293386076 cites W2951442608 @default.
- W4293386076 cites W2971595387 @default.
- W4293386076 cites W2980100207 @default.
- W4293386076 cites W2992482826 @default.
- W4293386076 cites W2996675459 @default.
- W4293386076 cites W2997404503 @default.
- W4293386076 cites W3015477129 @default.
- W4293386076 cites W3020183432 @default.
- W4293386076 cites W3021299754 @default.
- W4293386076 cites W3034054571 @default.
- W4293386076 cites W3037706619 @default.
- W4293386076 cites W3039014617 @default.
- W4293386076 cites W3043084043 @default.
- W4293386076 cites W3045004532 @default.
- W4293386076 cites W3047574998 @default.
- W4293386076 cites W3049511937 @default.
- W4293386076 cites W3084307327 @default.
- W4293386076 cites W3103145119 @default.
- W4293386076 cites W3107642158 @default.
- W4293386076 cites W3112644111 @default.
- W4293386076 cites W3115710758 @default.
- W4293386076 cites W3118147777 @default.
- W4293386076 cites W3125080556 @default.
- W4293386076 cites W3135463282 @default.
- W4293386076 cites W3158809276 @default.
- W4293386076 cites W3159243351 @default.
- W4293386076 cites W3159580687 @default.
- W4293386076 cites W3165537959 @default.
- W4293386076 cites W3191760821 @default.
- W4293386076 cites W3192325925 @default.
- W4293386076 cites W3196366936 @default.
- W4293386076 cites W3210895416 @default.
- W4293386076 cites W4200351803 @default.
- W4293386076 cites W4210446036 @default.
- W4293386076 cites W4213265320 @default.
- W4293386076 doi "https://doi.org/10.1016/j.eswa.2022.118658" @default.
- W4293386076 hasPublicationYear "2023" @default.
- W4293386076 type Work @default.
- W4293386076 citedByCount "5" @default.
- W4293386076 countsByYear W42933860762023 @default.
- W4293386076 crossrefType "journal-article" @default.
- W4293386076 hasAuthorship W4293386076A5075690391 @default.
- W4293386076 hasConcept C105795698 @default.
- W4293386076 hasConcept C119857082 @default.
- W4293386076 hasConcept C124101348 @default.
- W4293386076 hasConcept C153083717 @default.
- W4293386076 hasConcept C154945302 @default.
- W4293386076 hasConcept C169258074 @default.
- W4293386076 hasConcept C197640229 @default.
- W4293386076 hasConcept C33923547 @default.
- W4293386076 hasConcept C41008148 @default.
- W4293386076 hasConceptScore W4293386076C105795698 @default.
- W4293386076 hasConceptScore W4293386076C119857082 @default.
- W4293386076 hasConceptScore W4293386076C124101348 @default.
- W4293386076 hasConceptScore W4293386076C153083717 @default.
- W4293386076 hasConceptScore W4293386076C154945302 @default.
- W4293386076 hasConceptScore W4293386076C169258074 @default.
- W4293386076 hasConceptScore W4293386076C197640229 @default.
- W4293386076 hasConceptScore W4293386076C33923547 @default.
- W4293386076 hasConceptScore W4293386076C41008148 @default.
- W4293386076 hasLocation W42933860761 @default.
- W4293386076 hasOpenAccess W4293386076 @default.
- W4293386076 hasPrimaryLocation W42933860761 @default.
- W4293386076 hasRelatedWork W2911455822 @default.
- W4293386076 hasRelatedWork W3018959556 @default.
- W4293386076 hasRelatedWork W3174196512 @default.
- W4293386076 hasRelatedWork W3211546796 @default.
- W4293386076 hasRelatedWork W4281560664 @default.
- W4293386076 hasRelatedWork W4281616679 @default.
- W4293386076 hasRelatedWork W4293525103 @default.
- W4293386076 hasRelatedWork W4308191010 @default.
- W4293386076 hasRelatedWork W4318350883 @default.
- W4293386076 hasRelatedWork W4323021782 @default.