Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293406161> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4293406161 abstract "Every permutation invariant Borel subset of the space of countable structures is definable in $La_{omega_1omega}$ by a theorem of Lopez-Escobar. We prove variants of this theorem relative to fixed relations and fixed non-permutation invariant quantifiers. Moreover we show that for every closed subgroup $G$ of the symmetric group $S_{infty}$, there is a closed binary quantifier $Q$ such that the $G$-invariant subsets of the space of countable structures are exactly the $La_{omega_1omega}(Q)$-definable sets." @default.
- W4293406161 created "2022-08-29" @default.
- W4293406161 creator A5003413515 @default.
- W4293406161 creator A5068886365 @default.
- W4293406161 date "2010-03-12" @default.
- W4293406161 modified "2023-09-27" @default.
- W4293406161 title "Non-permutation invariant Borel quantifiers" @default.
- W4293406161 doi "https://doi.org/10.48550/arxiv.1003.2592" @default.
- W4293406161 hasPublicationYear "2010" @default.
- W4293406161 type Work @default.
- W4293406161 citedByCount "0" @default.
- W4293406161 crossrefType "posted-content" @default.
- W4293406161 hasAuthorship W4293406161A5003413515 @default.
- W4293406161 hasAuthorship W4293406161A5068886365 @default.
- W4293406161 hasBestOaLocation W42934061611 @default.
- W4293406161 hasConcept C110729354 @default.
- W4293406161 hasConcept C114614502 @default.
- W4293406161 hasConcept C118615104 @default.
- W4293406161 hasConcept C121332964 @default.
- W4293406161 hasConcept C128622974 @default.
- W4293406161 hasConcept C190470478 @default.
- W4293406161 hasConcept C21308566 @default.
- W4293406161 hasConcept C24890656 @default.
- W4293406161 hasConcept C2779557605 @default.
- W4293406161 hasConcept C33923547 @default.
- W4293406161 hasConcept C37914503 @default.
- W4293406161 hasConcept C39952206 @default.
- W4293406161 hasConcept C62520636 @default.
- W4293406161 hasConcept C77670614 @default.
- W4293406161 hasConcept C92957085 @default.
- W4293406161 hasConceptScore W4293406161C110729354 @default.
- W4293406161 hasConceptScore W4293406161C114614502 @default.
- W4293406161 hasConceptScore W4293406161C118615104 @default.
- W4293406161 hasConceptScore W4293406161C121332964 @default.
- W4293406161 hasConceptScore W4293406161C128622974 @default.
- W4293406161 hasConceptScore W4293406161C190470478 @default.
- W4293406161 hasConceptScore W4293406161C21308566 @default.
- W4293406161 hasConceptScore W4293406161C24890656 @default.
- W4293406161 hasConceptScore W4293406161C2779557605 @default.
- W4293406161 hasConceptScore W4293406161C33923547 @default.
- W4293406161 hasConceptScore W4293406161C37914503 @default.
- W4293406161 hasConceptScore W4293406161C39952206 @default.
- W4293406161 hasConceptScore W4293406161C62520636 @default.
- W4293406161 hasConceptScore W4293406161C77670614 @default.
- W4293406161 hasConceptScore W4293406161C92957085 @default.
- W4293406161 hasLocation W42934061611 @default.
- W4293406161 hasOpenAccess W4293406161 @default.
- W4293406161 hasPrimaryLocation W42934061611 @default.
- W4293406161 hasRelatedWork W1841545011 @default.
- W4293406161 hasRelatedWork W1996861589 @default.
- W4293406161 hasRelatedWork W2037993261 @default.
- W4293406161 hasRelatedWork W2949846941 @default.
- W4293406161 hasRelatedWork W3035796172 @default.
- W4293406161 hasRelatedWork W3101611711 @default.
- W4293406161 hasRelatedWork W3198192151 @default.
- W4293406161 hasRelatedWork W4293406161 @default.
- W4293406161 hasRelatedWork W4299085884 @default.
- W4293406161 hasRelatedWork W4302765100 @default.
- W4293406161 isParatext "false" @default.
- W4293406161 isRetracted "false" @default.
- W4293406161 workType "article" @default.