Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293408972> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4293408972 abstract "Early forest fire detection is of great importance to avoid the huge damage of forests caused by fires. Early fire detection focuses on smoke detection. The forest area is gradually decreased because of increasing forest fire and human activities. The satellite sensor is used to collect the forest thermal image in different places and analyze the data in these images to detect the fire region if they occur. Image processing technique can effectively predict the fire in the forest. The input image is pre- processed to enhance the image quality, because the input image has the noise, so the pre- processing technique is used to eliminate the noise in this system and enhance the image quality. The pre-processed image is taking to the segmentation process; it processes the image to adjacent the forest sub-area. In this system, the affected area is separately detected, and it gives the accurate forest fire in this system because the output image intensity is better to stabilize the average value of the image. In our proposed system we propose a deep learning method that uses a Convolutional Neural Network (CNN) to predict the forest fire detection. The convolutional layer is the main building block of the convolutional neural network. Usually, the layers of the network are fully connected in which a neuron in the next layer is connected to all the neurons in the previous layer. We are going to detect the fire in the forest result based on the accuracy which we get in train and test of the dataset based CNN algorithm using that we show the graph result. KEYWORDS CNN– Convolutional neural network." @default.
- W4293408972 created "2022-08-29" @default.
- W4293408972 creator A5076976968 @default.
- W4293408972 date "2022-08-28" @default.
- W4293408972 modified "2023-10-01" @default.
- W4293408972 title "FOREST FIRE DETECTION USING DEEP LEARNING" @default.
- W4293408972 doi "https://doi.org/10.55041/ijsrem16191" @default.
- W4293408972 hasPublicationYear "2022" @default.
- W4293408972 type Work @default.
- W4293408972 citedByCount "0" @default.
- W4293408972 crossrefType "journal-article" @default.
- W4293408972 hasAuthorship W4293408972A5076976968 @default.
- W4293408972 hasBestOaLocation W42934089721 @default.
- W4293408972 hasConcept C108583219 @default.
- W4293408972 hasConcept C111919701 @default.
- W4293408972 hasConcept C115961682 @default.
- W4293408972 hasConcept C124504099 @default.
- W4293408972 hasConcept C127413603 @default.
- W4293408972 hasConcept C154945302 @default.
- W4293408972 hasConcept C170154142 @default.
- W4293408972 hasConcept C205649164 @default.
- W4293408972 hasConcept C2524010 @default.
- W4293408972 hasConcept C2777210771 @default.
- W4293408972 hasConcept C2780836893 @default.
- W4293408972 hasConcept C31972630 @default.
- W4293408972 hasConcept C33923547 @default.
- W4293408972 hasConcept C39432304 @default.
- W4293408972 hasConcept C41008148 @default.
- W4293408972 hasConcept C50644808 @default.
- W4293408972 hasConcept C62649853 @default.
- W4293408972 hasConcept C81363708 @default.
- W4293408972 hasConcept C9417928 @default.
- W4293408972 hasConcept C98045186 @default.
- W4293408972 hasConceptScore W4293408972C108583219 @default.
- W4293408972 hasConceptScore W4293408972C111919701 @default.
- W4293408972 hasConceptScore W4293408972C115961682 @default.
- W4293408972 hasConceptScore W4293408972C124504099 @default.
- W4293408972 hasConceptScore W4293408972C127413603 @default.
- W4293408972 hasConceptScore W4293408972C154945302 @default.
- W4293408972 hasConceptScore W4293408972C170154142 @default.
- W4293408972 hasConceptScore W4293408972C205649164 @default.
- W4293408972 hasConceptScore W4293408972C2524010 @default.
- W4293408972 hasConceptScore W4293408972C2777210771 @default.
- W4293408972 hasConceptScore W4293408972C2780836893 @default.
- W4293408972 hasConceptScore W4293408972C31972630 @default.
- W4293408972 hasConceptScore W4293408972C33923547 @default.
- W4293408972 hasConceptScore W4293408972C39432304 @default.
- W4293408972 hasConceptScore W4293408972C41008148 @default.
- W4293408972 hasConceptScore W4293408972C50644808 @default.
- W4293408972 hasConceptScore W4293408972C62649853 @default.
- W4293408972 hasConceptScore W4293408972C81363708 @default.
- W4293408972 hasConceptScore W4293408972C9417928 @default.
- W4293408972 hasConceptScore W4293408972C98045186 @default.
- W4293408972 hasIssue "06" @default.
- W4293408972 hasLocation W42934089721 @default.
- W4293408972 hasOpenAccess W4293408972 @default.
- W4293408972 hasPrimaryLocation W42934089721 @default.
- W4293408972 hasRelatedWork W2731899572 @default.
- W4293408972 hasRelatedWork W2794171045 @default.
- W4293408972 hasRelatedWork W2999805992 @default.
- W4293408972 hasRelatedWork W3035135795 @default.
- W4293408972 hasRelatedWork W3116150086 @default.
- W4293408972 hasRelatedWork W3133861977 @default.
- W4293408972 hasRelatedWork W3214851576 @default.
- W4293408972 hasRelatedWork W4200173597 @default.
- W4293408972 hasRelatedWork W4312417841 @default.
- W4293408972 hasRelatedWork W4321369474 @default.
- W4293408972 hasVolume "06" @default.
- W4293408972 isParatext "false" @default.
- W4293408972 isRetracted "false" @default.
- W4293408972 workType "article" @default.