Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293443642> ?p ?o ?g. }
- W4293443642 abstract "Objective: To determine whether predictions of suicide risk from machine learning models identify unexpected patients or patients without medical record documentation of traditional risk factors.Methods: The study sample included 27,091,382 outpatient mental health (MH) specialty or general medical visits with a MH diagnosis for patients aged 11 years or older from January 1, 2009, to September 30, 2017. We used predicted risk scores of suicide attempt and suicide death, separately, within 90 days of visits to classify visits into risk score percentile strata. For each stratum, we calculated counts and percentages of visits with traditional risk factors, including prior self-harm diagnoses and emergency department visits or hospitalizations with MH diagnoses, in the last 3, 12, and 60 months.Results: Risk-factor percentages increased with predicted risk scores. Among MH specialty visits, 66%, 88%, and 99% of visits with suicide attempt risk scores in the top 3 strata (respectively, 90th-95th, 95th-98th, and ≥ 98th percentiles) and 60%, 77%, and 93% of visits with suicide risk scores in the top 3 strata represented patients who had at least one traditional risk factor documented in the prior 12 months. Among general medical visits, 52%, 66%, and 90% of visits with suicide attempt risk scores in the top 3 strata and 45%, 66%, and 79% of visits with suicide risk scores in the top 3 strata represented patients who had a history of traditional risk factors in the last 12 months.Conclusions: Suicide risk alerts based on these machine learning models coincide with patients traditionally thought of as high-risk at their high-risk visits." @default.
- W4293443642 created "2022-08-29" @default.
- W4293443642 creator A5002703252 @default.
- W4293443642 creator A5004529560 @default.
- W4293443642 creator A5006606212 @default.
- W4293443642 creator A5007625847 @default.
- W4293443642 creator A5020580683 @default.
- W4293443642 creator A5025775722 @default.
- W4293443642 creator A5036789547 @default.
- W4293443642 creator A5040344572 @default.
- W4293443642 creator A5046182896 @default.
- W4293443642 creator A5071792254 @default.
- W4293443642 creator A5073627757 @default.
- W4293443642 creator A5084602204 @default.
- W4293443642 creator A5085994871 @default.
- W4293443642 date "2022-08-31" @default.
- W4293443642 modified "2023-09-23" @default.
- W4293443642 title "Machine Learning Prediction of Suicide Risk Does Not Identify Patients Without Traditional Risk Factors" @default.
- W4293443642 cites W1977934795 @default.
- W4293443642 cites W2004664771 @default.
- W4293443642 cites W2057468507 @default.
- W4293443642 cites W2121468917 @default.
- W4293443642 cites W2154692607 @default.
- W4293443642 cites W2166889936 @default.
- W4293443642 cites W2294027214 @default.
- W4293443642 cites W2500707965 @default.
- W4293443642 cites W2509888018 @default.
- W4293443642 cites W2554980225 @default.
- W4293443642 cites W2789894922 @default.
- W4293443642 cites W2804266670 @default.
- W4293443642 cites W2897748714 @default.
- W4293443642 cites W2913968412 @default.
- W4293443642 cites W2921616123 @default.
- W4293443642 cites W2955434830 @default.
- W4293443642 cites W2955712117 @default.
- W4293443642 cites W2955808745 @default.
- W4293443642 cites W2974408919 @default.
- W4293443642 cites W3096906400 @default.
- W4293443642 cites W3153905165 @default.
- W4293443642 cites W3164628861 @default.
- W4293443642 cites W3194842520 @default.
- W4293443642 cites W4292659747 @default.
- W4293443642 doi "https://doi.org/10.4088/jcp.21m14178" @default.
- W4293443642 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36044603" @default.
- W4293443642 hasPublicationYear "2022" @default.
- W4293443642 type Work @default.
- W4293443642 citedByCount "0" @default.
- W4293443642 crossrefType "journal-article" @default.
- W4293443642 hasAuthorship W4293443642A5002703252 @default.
- W4293443642 hasAuthorship W4293443642A5004529560 @default.
- W4293443642 hasAuthorship W4293443642A5006606212 @default.
- W4293443642 hasAuthorship W4293443642A5007625847 @default.
- W4293443642 hasAuthorship W4293443642A5020580683 @default.
- W4293443642 hasAuthorship W4293443642A5025775722 @default.
- W4293443642 hasAuthorship W4293443642A5036789547 @default.
- W4293443642 hasAuthorship W4293443642A5040344572 @default.
- W4293443642 hasAuthorship W4293443642A5046182896 @default.
- W4293443642 hasAuthorship W4293443642A5071792254 @default.
- W4293443642 hasAuthorship W4293443642A5073627757 @default.
- W4293443642 hasAuthorship W4293443642A5084602204 @default.
- W4293443642 hasAuthorship W4293443642A5085994871 @default.
- W4293443642 hasConcept C105795698 @default.
- W4293443642 hasConcept C118552586 @default.
- W4293443642 hasConcept C12174686 @default.
- W4293443642 hasConcept C122048520 @default.
- W4293443642 hasConcept C126322002 @default.
- W4293443642 hasConcept C142724271 @default.
- W4293443642 hasConcept C144024400 @default.
- W4293443642 hasConcept C149923435 @default.
- W4293443642 hasConcept C187155963 @default.
- W4293443642 hasConcept C190385971 @default.
- W4293443642 hasConcept C194828623 @default.
- W4293443642 hasConcept C195910791 @default.
- W4293443642 hasConcept C20387591 @default.
- W4293443642 hasConcept C2780724011 @default.
- W4293443642 hasConcept C2780842732 @default.
- W4293443642 hasConcept C3017944768 @default.
- W4293443642 hasConcept C33923547 @default.
- W4293443642 hasConcept C38652104 @default.
- W4293443642 hasConcept C41008148 @default.
- W4293443642 hasConcept C50440223 @default.
- W4293443642 hasConcept C512399662 @default.
- W4293443642 hasConcept C526869908 @default.
- W4293443642 hasConcept C534262118 @default.
- W4293443642 hasConcept C71924100 @default.
- W4293443642 hasConceptScore W4293443642C105795698 @default.
- W4293443642 hasConceptScore W4293443642C118552586 @default.
- W4293443642 hasConceptScore W4293443642C12174686 @default.
- W4293443642 hasConceptScore W4293443642C122048520 @default.
- W4293443642 hasConceptScore W4293443642C126322002 @default.
- W4293443642 hasConceptScore W4293443642C142724271 @default.
- W4293443642 hasConceptScore W4293443642C144024400 @default.
- W4293443642 hasConceptScore W4293443642C149923435 @default.
- W4293443642 hasConceptScore W4293443642C187155963 @default.
- W4293443642 hasConceptScore W4293443642C190385971 @default.
- W4293443642 hasConceptScore W4293443642C194828623 @default.
- W4293443642 hasConceptScore W4293443642C195910791 @default.
- W4293443642 hasConceptScore W4293443642C20387591 @default.
- W4293443642 hasConceptScore W4293443642C2780724011 @default.
- W4293443642 hasConceptScore W4293443642C2780842732 @default.