Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293450884> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4293450884 endingPage "239" @default.
- W4293450884 startingPage "226" @default.
- W4293450884 abstract "Recently, feature selection has become challenging for many machine learning disciplines. The success of most existing approaches depends on the effectiveness of searching strategies to select the most salient features from the original feature space. Unfortunately, these approaches may become impractical when dealing with high-dimensional datasets. In order to overcome this problem, recent studies rely on a boundary scheme (i.e., fixing a number of selected features) to reduce the searching space or a ranking scheme (e.g., features with less correlated scores) to guide the selection phase. However, choosing the best-fitted size for the feature subset is also a hard problem, and relying on one feature comparison criteria may ignore important features. In this paper, we propose a genetic algorithm that aims to optimize the feature subset and the appropriate number of selected features to maximize the performance of an Artificial Neural Network (ANN) classifier. To improve the efficiency of the selection phase, we combine the proposed GA with a local search algorithm based on a ranking aggregation approach. Our objective is to speed up the searching algorithm by taking advantage of different feature scoring criteria. We have assessed the performance of our approach over three categories of datasets: small, medium and high in terms of feature dimensionality (e.g., the smallest and the largest datasets include 8 and 7129 features, respectively). The empirical results have shown that our proposed approach outperforms the other state-of-the-art works when dealing with medium- and high-dimensional datasets and is comparable to them in the case of small-dimensional datasets." @default.
- W4293450884 created "2022-08-29" @default.
- W4293450884 creator A5007811820 @default.
- W4293450884 creator A5023075992 @default.
- W4293450884 creator A5024349250 @default.
- W4293450884 date "2022-01-01" @default.
- W4293450884 modified "2023-09-29" @default.
- W4293450884 title "A Hybrid Approach Based on Genetic Algorithm with Ranking Aggregation for Feature Selection" @default.
- W4293450884 cites W1521226446 @default.
- W4293450884 cites W1996759417 @default.
- W4293450884 cites W2002979815 @default.
- W4293450884 cites W2038567802 @default.
- W4293450884 cites W2083528810 @default.
- W4293450884 cites W2118578744 @default.
- W4293450884 cites W2146511318 @default.
- W4293450884 cites W2154053567 @default.
- W4293450884 cites W2163877626 @default.
- W4293450884 cites W2420341101 @default.
- W4293450884 cites W2555146830 @default.
- W4293450884 cites W2740813652 @default.
- W4293450884 cites W2765937321 @default.
- W4293450884 cites W2775211631 @default.
- W4293450884 cites W2792730533 @default.
- W4293450884 cites W2794866761 @default.
- W4293450884 cites W2887748405 @default.
- W4293450884 cites W2892911634 @default.
- W4293450884 cites W2900982769 @default.
- W4293450884 cites W2951508240 @default.
- W4293450884 cites W3151961581 @default.
- W4293450884 cites W3210107380 @default.
- W4293450884 cites W42435736 @default.
- W4293450884 cites W4253871110 @default.
- W4293450884 doi "https://doi.org/10.1007/978-3-031-08530-7_19" @default.
- W4293450884 hasPublicationYear "2022" @default.
- W4293450884 type Work @default.
- W4293450884 citedByCount "1" @default.
- W4293450884 countsByYear W42934508842023 @default.
- W4293450884 crossrefType "book-chapter" @default.
- W4293450884 hasAuthorship W4293450884A5007811820 @default.
- W4293450884 hasAuthorship W4293450884A5023075992 @default.
- W4293450884 hasAuthorship W4293450884A5024349250 @default.
- W4293450884 hasConcept C111030470 @default.
- W4293450884 hasConcept C119857082 @default.
- W4293450884 hasConcept C124101348 @default.
- W4293450884 hasConcept C138885662 @default.
- W4293450884 hasConcept C148483581 @default.
- W4293450884 hasConcept C153180895 @default.
- W4293450884 hasConcept C154945302 @default.
- W4293450884 hasConcept C189430467 @default.
- W4293450884 hasConcept C2776401178 @default.
- W4293450884 hasConcept C2780719617 @default.
- W4293450884 hasConcept C41008148 @default.
- W4293450884 hasConcept C41895202 @default.
- W4293450884 hasConcept C95623464 @default.
- W4293450884 hasConceptScore W4293450884C111030470 @default.
- W4293450884 hasConceptScore W4293450884C119857082 @default.
- W4293450884 hasConceptScore W4293450884C124101348 @default.
- W4293450884 hasConceptScore W4293450884C138885662 @default.
- W4293450884 hasConceptScore W4293450884C148483581 @default.
- W4293450884 hasConceptScore W4293450884C153180895 @default.
- W4293450884 hasConceptScore W4293450884C154945302 @default.
- W4293450884 hasConceptScore W4293450884C189430467 @default.
- W4293450884 hasConceptScore W4293450884C2776401178 @default.
- W4293450884 hasConceptScore W4293450884C2780719617 @default.
- W4293450884 hasConceptScore W4293450884C41008148 @default.
- W4293450884 hasConceptScore W4293450884C41895202 @default.
- W4293450884 hasConceptScore W4293450884C95623464 @default.
- W4293450884 hasLocation W42934508841 @default.
- W4293450884 hasOpenAccess W4293450884 @default.
- W4293450884 hasPrimaryLocation W42934508841 @default.
- W4293450884 hasRelatedWork W2134990190 @default.
- W4293450884 hasRelatedWork W2363993642 @default.
- W4293450884 hasRelatedWork W2374344280 @default.
- W4293450884 hasRelatedWork W2563096758 @default.
- W4293450884 hasRelatedWork W2726222394 @default.
- W4293450884 hasRelatedWork W3200179079 @default.
- W4293450884 hasRelatedWork W4293525103 @default.
- W4293450884 hasRelatedWork W4386053843 @default.
- W4293450884 hasRelatedWork W2345184372 @default.
- W4293450884 hasRelatedWork W3158004940 @default.
- W4293450884 isParatext "false" @default.
- W4293450884 isRetracted "false" @default.
- W4293450884 workType "book-chapter" @default.