Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293458312> ?p ?o ?g. }
- W4293458312 endingPage "e2227423" @default.
- W4293458312 startingPage "e2227423" @default.
- W4293458312 abstract "<h3>Importance</h3> An automated, accurate method is needed for unbiased assessment quantifying accrual of joint space narrowing and erosions on radiographic images of the hands and wrists, and feet for clinical trials, monitoring of joint damage over time, assisting rheumatologists with treatment decisions. Such a method has the potential to be directly integrated into electronic health records. <h3>Objectives</h3> To design and implement an international crowdsourcing competition to catalyze the development of machine learning methods to quantify radiographic damage in rheumatoid arthritis (RA). <h3>Design, Setting, and Participants</h3> This diagnostic/prognostic study describes the Rheumatoid Arthritis 2–Dialogue for Reverse Engineering Assessment and Methods (RA2-DREAM Challenge), which used existing radiographic images and expert-curated Sharp-van der Heijde (SvH) scores from 2 clinical studies (674 radiographic sets from 562 patients) for training (367 sets), leaderboard (119 sets), and final evaluation (188 sets). Challenge participants were tasked with developing methods to automatically quantify overall damage (subchallenge 1), joint space narrowing (subchallenge 2), and erosions (subchallenge 3). The challenge was finished on June 30, 2020. <h3>Main Outcomes and Measures</h3> Scores derived from submitted algorithms were compared with the expert-curated SvH scores, and a baseline model was created for benchmark comparison. Performances were ranked using weighted root mean square error (RMSE). The performance and reproductivity of each algorithm was assessed using Bayes factor from bootstrapped data, and further evaluated with a postchallenge independent validation data set. <h3>Results</h3> The RA2-DREAM Challenge received a total of 173 submissions from 26 participants or teams in 7 countries for the leaderboard round, and 13 submissions were included in the final evaluation. The weighted RMSEs metric showed that the winning algorithms produced scores that were very close to the expert-curated SvH scores. Top teams included Team Shirin for subchallenge 1 (weighted RMSE, 0.44), HYL-YFG (Hongyang Li and Yuanfang Guan) subchallenge 2 (weighted RMSE, 0.38), and Gold Therapy for subchallenge 3 (weighted RMSE, 0.43). Bootstrapping/Bayes factor approach and the postchallenge independent validation confirmed the reproducibility and the estimation concordance indices between final evaluation and postchallenge independent validation data set were 0.71 for subchallenge 1, 0.78 for subchallenge 2, and 0.82 for subchallenge 3. <h3>Conclusions and Relevance</h3> The RA2-DREAM Challenge resulted in the development of algorithms that provide feasible, quick, and accurate methods to quantify joint damage in RA. Ultimately, these methods could help research studies on RA joint damage and may be integrated into electronic health records to help clinicians serve patients better by providing timely, reliable, and quantitative information for making treatment decisions to prevent further damage." @default.
- W4293458312 created "2022-08-29" @default.
- W4293458312 creator A5000065699 @default.
- W4293458312 creator A5005848551 @default.
- W4293458312 creator A5009014905 @default.
- W4293458312 creator A5009962102 @default.
- W4293458312 creator A5011032655 @default.
- W4293458312 creator A5012846496 @default.
- W4293458312 creator A5017624067 @default.
- W4293458312 creator A5017987266 @default.
- W4293458312 creator A5018043372 @default.
- W4293458312 creator A5019467473 @default.
- W4293458312 creator A5020796581 @default.
- W4293458312 creator A5021651358 @default.
- W4293458312 creator A5026706335 @default.
- W4293458312 creator A5032353388 @default.
- W4293458312 creator A5034436003 @default.
- W4293458312 creator A5036382866 @default.
- W4293458312 creator A5038708133 @default.
- W4293458312 creator A5039031771 @default.
- W4293458312 creator A5039073492 @default.
- W4293458312 creator A5039466406 @default.
- W4293458312 creator A5041208558 @default.
- W4293458312 creator A5041722253 @default.
- W4293458312 creator A5046152936 @default.
- W4293458312 creator A5046686207 @default.
- W4293458312 creator A5052009837 @default.
- W4293458312 creator A5052119005 @default.
- W4293458312 creator A5058469124 @default.
- W4293458312 creator A5059079584 @default.
- W4293458312 creator A5059585116 @default.
- W4293458312 creator A5060271998 @default.
- W4293458312 creator A5061315845 @default.
- W4293458312 creator A5062339398 @default.
- W4293458312 creator A5067084327 @default.
- W4293458312 creator A5068469075 @default.
- W4293458312 creator A5071218319 @default.
- W4293458312 creator A5072360740 @default.
- W4293458312 creator A5073861250 @default.
- W4293458312 creator A5076187324 @default.
- W4293458312 creator A5080308005 @default.
- W4293458312 creator A5080999268 @default.
- W4293458312 creator A5082176570 @default.
- W4293458312 creator A5083095344 @default.
- W4293458312 creator A5083338023 @default.
- W4293458312 creator A5085529518 @default.
- W4293458312 creator A5090336120 @default.
- W4293458312 creator A5090731148 @default.
- W4293458312 creator A5069402219 @default.
- W4293458312 date "2022-08-29" @default.
- W4293458312 modified "2023-10-05" @default.
- W4293458312 title "A Crowdsourcing Approach to Develop Machine Learning Models to Quantify Radiographic Joint Damage in Rheumatoid Arthritis" @default.
- W4293458312 cites W1589268223 @default.
- W4293458312 cites W1677182931 @default.
- W4293458312 cites W1867131794 @default.
- W4293458312 cites W1901129140 @default.
- W4293458312 cites W1922688687 @default.
- W4293458312 cites W1987775505 @default.
- W4293458312 cites W2028764755 @default.
- W4293458312 cites W2041317573 @default.
- W4293458312 cites W2099656684 @default.
- W4293458312 cites W2102605133 @default.
- W4293458312 cites W2108933868 @default.
- W4293458312 cites W2109384743 @default.
- W4293458312 cites W2150926228 @default.
- W4293458312 cites W2151984197 @default.
- W4293458312 cites W2155402987 @default.
- W4293458312 cites W2194775991 @default.
- W4293458312 cites W2552908002 @default.
- W4293458312 cites W2745176115 @default.
- W4293458312 cites W2884561390 @default.
- W4293458312 cites W2963037989 @default.
- W4293458312 cites W2963351448 @default.
- W4293458312 cites W2963420686 @default.
- W4293458312 cites W2963446712 @default.
- W4293458312 cites W2989916101 @default.
- W4293458312 cites W3006670485 @default.
- W4293458312 cites W3104496769 @default.
- W4293458312 cites W3118908945 @default.
- W4293458312 cites W3169276553 @default.
- W4293458312 cites W4200409436 @default.
- W4293458312 cites W4250633723 @default.
- W4293458312 cites W4298074858 @default.
- W4293458312 cites W4362597616 @default.
- W4293458312 doi "https://doi.org/10.1001/jamanetworkopen.2022.27423" @default.
- W4293458312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36036935" @default.
- W4293458312 hasPublicationYear "2022" @default.
- W4293458312 type Work @default.
- W4293458312 citedByCount "5" @default.
- W4293458312 countsByYear W42934583122023 @default.
- W4293458312 crossrefType "journal-article" @default.
- W4293458312 hasAuthorship W4293458312A5000065699 @default.
- W4293458312 hasAuthorship W4293458312A5005848551 @default.
- W4293458312 hasAuthorship W4293458312A5009014905 @default.
- W4293458312 hasAuthorship W4293458312A5009962102 @default.
- W4293458312 hasAuthorship W4293458312A5011032655 @default.
- W4293458312 hasAuthorship W4293458312A5012846496 @default.
- W4293458312 hasAuthorship W4293458312A5017624067 @default.