Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293460700> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4293460700 abstract "For each prime p > 7 we obtain the expression for an upper bound on the minimum number of colors needed to non-trivially color T(2, p), the torus knots of type (2, p), modulo p. This expression is t + 2 l -1 where t and l are extracted from the prime p. It is obtained from iterating the so-called Teneva transformations which we introduced in a previous article. With the aid of our estimate we show that the ratio number of colors needed vs. number of colors available tends to decrease with increasing modulus p. For instance as of prime 331, the number of colors needed is already one tenth of the number of colors available. Furthermore, we prove that 5 is minimum number of colors needed to non-trivially color T(2, 11) modulo 11. Finally, as a preview of our future work, we prove that 5 is the minimum number of colors modulo 11 for two rational knots with determinant 11." @default.
- W4293460700 created "2022-08-29" @default.
- W4293460700 creator A5052549454 @default.
- W4293460700 creator A5057018104 @default.
- W4293460700 date "2012-04-23" @default.
- W4293460700 modified "2023-09-27" @default.
- W4293460700 title "The Teneva Game" @default.
- W4293460700 doi "https://doi.org/10.48550/arxiv.1204.5011" @default.
- W4293460700 hasPublicationYear "2012" @default.
- W4293460700 type Work @default.
- W4293460700 citedByCount "0" @default.
- W4293460700 crossrefType "posted-content" @default.
- W4293460700 hasAuthorship W4293460700A5052549454 @default.
- W4293460700 hasAuthorship W4293460700A5057018104 @default.
- W4293460700 hasBestOaLocation W42934607001 @default.
- W4293460700 hasConcept C113429393 @default.
- W4293460700 hasConcept C114614502 @default.
- W4293460700 hasConcept C118615104 @default.
- W4293460700 hasConcept C134306372 @default.
- W4293460700 hasConcept C184992742 @default.
- W4293460700 hasConcept C2524010 @default.
- W4293460700 hasConcept C33923547 @default.
- W4293460700 hasConcept C54732982 @default.
- W4293460700 hasConcept C77553402 @default.
- W4293460700 hasConcept C9767117 @default.
- W4293460700 hasConceptScore W4293460700C113429393 @default.
- W4293460700 hasConceptScore W4293460700C114614502 @default.
- W4293460700 hasConceptScore W4293460700C118615104 @default.
- W4293460700 hasConceptScore W4293460700C134306372 @default.
- W4293460700 hasConceptScore W4293460700C184992742 @default.
- W4293460700 hasConceptScore W4293460700C2524010 @default.
- W4293460700 hasConceptScore W4293460700C33923547 @default.
- W4293460700 hasConceptScore W4293460700C54732982 @default.
- W4293460700 hasConceptScore W4293460700C77553402 @default.
- W4293460700 hasConceptScore W4293460700C9767117 @default.
- W4293460700 hasLocation W42934607001 @default.
- W4293460700 hasOpenAccess W4293460700 @default.
- W4293460700 hasPrimaryLocation W42934607001 @default.
- W4293460700 hasRelatedWork W110346986 @default.
- W4293460700 hasRelatedWork W1703119562 @default.
- W4293460700 hasRelatedWork W2000057171 @default.
- W4293460700 hasRelatedWork W2151443628 @default.
- W4293460700 hasRelatedWork W2767659640 @default.
- W4293460700 hasRelatedWork W3046614992 @default.
- W4293460700 hasRelatedWork W3087194925 @default.
- W4293460700 hasRelatedWork W3100417154 @default.
- W4293460700 hasRelatedWork W4280511095 @default.
- W4293460700 hasRelatedWork W436396025 @default.
- W4293460700 isParatext "false" @default.
- W4293460700 isRetracted "false" @default.
- W4293460700 workType "article" @default.