Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293473288> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4293473288 endingPage "107929" @default.
- W4293473288 startingPage "107929" @default.
- W4293473288 abstract "This study innovatively proposes a high-precision monitoring method for key parameters in the process of ethanol production from simultaneous saccharification and fermentation (SSF) by electronic nose technology combined with recurrent neural network (RNN). A PEN3 electronic nose system was employed to acquire the odor information of the fermented samples, and four deep learning algorithms based on the RNN architecture were employed to design reasonable network structures to realize the deep learning of the electronic nose signal features and model calibration. The results obtained showed that each deep learning model based on the RNN architecture has good generalization performance for the determination of cassava SSF process parameters. Among them, the bidirectional long short-term memory network (BiLSTM) model has the best monitoring effect on ethanol content, with root mean square error of prediction (RMSEP) of 3.7 mg·mL−1 and coefficient of predictive determination (RP2) of 0.98 and the relative percent deviation (RPD) of 8.1. The bidirectional gated recurrent unit (BiGRU) model had the best monitoring effect on glucose content, and its RMSEP, RP2 and RPD were 2.9 mg·mL−1, 0.99 and 9.1, respectively. The overall results reveal that deep learning algorithms have promising application prospects in the feature mining and model calibration of electronic nose signals, which provides an effective analysis tool for in-situ monitoring of electronic nose technology in modern industrial fermentation processes." @default.
- W4293473288 created "2022-08-29" @default.
- W4293473288 creator A5023527806 @default.
- W4293473288 creator A5056168495 @default.
- W4293473288 creator A5076366428 @default.
- W4293473288 creator A5091047704 @default.
- W4293473288 date "2022-11-01" @default.
- W4293473288 modified "2023-10-16" @default.
- W4293473288 title "Electronic nose signals-based deep learning models to realize high-precision monitoring of simultaneous saccharification and fermentation of cassava" @default.
- W4293473288 cites W1757597174 @default.
- W4293473288 cites W1953773122 @default.
- W4293473288 cites W1964684060 @default.
- W4293473288 cites W1995834386 @default.
- W4293473288 cites W2001270302 @default.
- W4293473288 cites W2016889699 @default.
- W4293473288 cites W2044002381 @default.
- W4293473288 cites W2077525115 @default.
- W4293473288 cites W2077749963 @default.
- W4293473288 cites W2093322500 @default.
- W4293473288 cites W2097848527 @default.
- W4293473288 cites W2116257457 @default.
- W4293473288 cites W2121990574 @default.
- W4293473288 cites W2132835018 @default.
- W4293473288 cites W2206816805 @default.
- W4293473288 cites W2228940409 @default.
- W4293473288 cites W2328513686 @default.
- W4293473288 cites W263531807 @default.
- W4293473288 cites W2647128403 @default.
- W4293473288 cites W2725459030 @default.
- W4293473288 cites W2754398708 @default.
- W4293473288 cites W2763996137 @default.
- W4293473288 cites W2960591852 @default.
- W4293473288 cites W2972828033 @default.
- W4293473288 cites W2987985611 @default.
- W4293473288 cites W3008247967 @default.
- W4293473288 cites W3081999386 @default.
- W4293473288 cites W3115103108 @default.
- W4293473288 cites W3162884340 @default.
- W4293473288 cites W4213026541 @default.
- W4293473288 doi "https://doi.org/10.1016/j.microc.2022.107929" @default.
- W4293473288 hasPublicationYear "2022" @default.
- W4293473288 type Work @default.
- W4293473288 citedByCount "4" @default.
- W4293473288 countsByYear W42934732882023 @default.
- W4293473288 crossrefType "journal-article" @default.
- W4293473288 hasAuthorship W4293473288A5023527806 @default.
- W4293473288 hasAuthorship W4293473288A5056168495 @default.
- W4293473288 hasAuthorship W4293473288A5076366428 @default.
- W4293473288 hasAuthorship W4293473288A5091047704 @default.
- W4293473288 hasConcept C100544194 @default.
- W4293473288 hasConcept C105795698 @default.
- W4293473288 hasConcept C108583219 @default.
- W4293473288 hasConcept C119857082 @default.
- W4293473288 hasConcept C139945424 @default.
- W4293473288 hasConcept C153180895 @default.
- W4293473288 hasConcept C154945302 @default.
- W4293473288 hasConcept C165838908 @default.
- W4293473288 hasConcept C185592680 @default.
- W4293473288 hasConcept C23895516 @default.
- W4293473288 hasConcept C31903555 @default.
- W4293473288 hasConcept C33923547 @default.
- W4293473288 hasConcept C41008148 @default.
- W4293473288 hasConcept C50644808 @default.
- W4293473288 hasConceptScore W4293473288C100544194 @default.
- W4293473288 hasConceptScore W4293473288C105795698 @default.
- W4293473288 hasConceptScore W4293473288C108583219 @default.
- W4293473288 hasConceptScore W4293473288C119857082 @default.
- W4293473288 hasConceptScore W4293473288C139945424 @default.
- W4293473288 hasConceptScore W4293473288C153180895 @default.
- W4293473288 hasConceptScore W4293473288C154945302 @default.
- W4293473288 hasConceptScore W4293473288C165838908 @default.
- W4293473288 hasConceptScore W4293473288C185592680 @default.
- W4293473288 hasConceptScore W4293473288C23895516 @default.
- W4293473288 hasConceptScore W4293473288C31903555 @default.
- W4293473288 hasConceptScore W4293473288C33923547 @default.
- W4293473288 hasConceptScore W4293473288C41008148 @default.
- W4293473288 hasConceptScore W4293473288C50644808 @default.
- W4293473288 hasLocation W42934732881 @default.
- W4293473288 hasOpenAccess W4293473288 @default.
- W4293473288 hasPrimaryLocation W42934732881 @default.
- W4293473288 hasRelatedWork W1596740836 @default.
- W4293473288 hasRelatedWork W1982974357 @default.
- W4293473288 hasRelatedWork W2056596841 @default.
- W4293473288 hasRelatedWork W2080410076 @default.
- W4293473288 hasRelatedWork W2081756653 @default.
- W4293473288 hasRelatedWork W2086179153 @default.
- W4293473288 hasRelatedWork W2349581046 @default.
- W4293473288 hasRelatedWork W2523761394 @default.
- W4293473288 hasRelatedWork W2536125181 @default.
- W4293473288 hasRelatedWork W2912293709 @default.
- W4293473288 hasVolume "182" @default.
- W4293473288 isParatext "false" @default.
- W4293473288 isRetracted "false" @default.
- W4293473288 workType "article" @default.