Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293474162> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4293474162 endingPage "102604" @default.
- W4293474162 startingPage "102604" @default.
- W4293474162 abstract "Deformable image correspondence plays an essential role in a variety of medical image analysis tasks. Most existing deep learning-based registration and correspondence techniques exploit metric space alignments in the spatial domain and learn a nonlinear voxel-wise mapping function between volumetric images and displacement fields, agnostic to intrinsic structure correspondence. When confronted with high-frequency perturbations of patients' poses and anatomical structural variations, they relied on prior rigid and affine transformations, as well as additional segmentation masks and landmark annotations for reliable registration. This paper presents a data-driven spectral mapping-based correspondence framework to handle the intrinsic correspondence of anatomical structures. At the core of our approach lies a deep convolutional framework that approximates spectral bases and optimizes volumetric descriptors. The multi-path graph convolutional network-based spectral embedding approximation module relieves the computationally expensive eigendecomposition-based embedding of volumetric images. The deep descriptor learning module surpasses the prior hand-crafted descriptors and the descriptor selection. We showcase the efficacy of the core modules, i.e., the spectral embedding approximation and descriptor learning, for volumetric image correspondence and the atlas-based registration on two volumetric image datasets. The proposed method achieves comparable correspondence accuracy with the state-of-the-art deep registration models, resilient to pose and shape perturbations." @default.
- W4293474162 created "2022-08-29" @default.
- W4293474162 creator A5017031914 @default.
- W4293474162 creator A5051110215 @default.
- W4293474162 creator A5081427229 @default.
- W4293474162 creator A5083734769 @default.
- W4293474162 creator A5084999631 @default.
- W4293474162 creator A5089285607 @default.
- W4293474162 date "2022-11-01" @default.
- W4293474162 modified "2023-10-13" @default.
- W4293474162 title "Dense correspondence of deformable volumetric images via deep spectral embedding and descriptor learning" @default.
- W4293474162 cites W1970928383 @default.
- W4293474162 cites W2047161559 @default.
- W4293474162 cites W2097308346 @default.
- W4293474162 cites W2115167851 @default.
- W4293474162 cites W2118246710 @default.
- W4293474162 cites W2136145485 @default.
- W4293474162 cites W2150534249 @default.
- W4293474162 cites W2604920239 @default.
- W4293474162 cites W2732387187 @default.
- W4293474162 cites W2888906402 @default.
- W4293474162 cites W2896852898 @default.
- W4293474162 cites W2901217788 @default.
- W4293474162 cites W2904555209 @default.
- W4293474162 cites W2963021451 @default.
- W4293474162 cites W2967600135 @default.
- W4293474162 cites W3092138472 @default.
- W4293474162 cites W3099561884 @default.
- W4293474162 cites W3190547258 @default.
- W4293474162 cites W4241074797 @default.
- W4293474162 doi "https://doi.org/10.1016/j.media.2022.102604" @default.
- W4293474162 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36108574" @default.
- W4293474162 hasPublicationYear "2022" @default.
- W4293474162 type Work @default.
- W4293474162 citedByCount "0" @default.
- W4293474162 crossrefType "journal-article" @default.
- W4293474162 hasAuthorship W4293474162A5017031914 @default.
- W4293474162 hasAuthorship W4293474162A5051110215 @default.
- W4293474162 hasAuthorship W4293474162A5081427229 @default.
- W4293474162 hasAuthorship W4293474162A5083734769 @default.
- W4293474162 hasAuthorship W4293474162A5084999631 @default.
- W4293474162 hasAuthorship W4293474162A5089285607 @default.
- W4293474162 hasConcept C108583219 @default.
- W4293474162 hasConcept C115961682 @default.
- W4293474162 hasConcept C153180895 @default.
- W4293474162 hasConcept C154945302 @default.
- W4293474162 hasConcept C166704113 @default.
- W4293474162 hasConcept C202444582 @default.
- W4293474162 hasConcept C2780297707 @default.
- W4293474162 hasConcept C3004257 @default.
- W4293474162 hasConcept C31972630 @default.
- W4293474162 hasConcept C33923547 @default.
- W4293474162 hasConcept C41008148 @default.
- W4293474162 hasConcept C41608201 @default.
- W4293474162 hasConcept C92757383 @default.
- W4293474162 hasConceptScore W4293474162C108583219 @default.
- W4293474162 hasConceptScore W4293474162C115961682 @default.
- W4293474162 hasConceptScore W4293474162C153180895 @default.
- W4293474162 hasConceptScore W4293474162C154945302 @default.
- W4293474162 hasConceptScore W4293474162C166704113 @default.
- W4293474162 hasConceptScore W4293474162C202444582 @default.
- W4293474162 hasConceptScore W4293474162C2780297707 @default.
- W4293474162 hasConceptScore W4293474162C3004257 @default.
- W4293474162 hasConceptScore W4293474162C31972630 @default.
- W4293474162 hasConceptScore W4293474162C33923547 @default.
- W4293474162 hasConceptScore W4293474162C41008148 @default.
- W4293474162 hasConceptScore W4293474162C41608201 @default.
- W4293474162 hasConceptScore W4293474162C92757383 @default.
- W4293474162 hasFunder F4320321001 @default.
- W4293474162 hasFunder F4320322919 @default.
- W4293474162 hasFunder F4320335787 @default.
- W4293474162 hasLocation W42934741621 @default.
- W4293474162 hasLocation W42934741622 @default.
- W4293474162 hasOpenAccess W4293474162 @default.
- W4293474162 hasPrimaryLocation W42934741621 @default.
- W4293474162 hasRelatedWork W2013731972 @default.
- W4293474162 hasRelatedWork W2024152175 @default.
- W4293474162 hasRelatedWork W2064297726 @default.
- W4293474162 hasRelatedWork W2105345063 @default.
- W4293474162 hasRelatedWork W2105931158 @default.
- W4293474162 hasRelatedWork W2387906347 @default.
- W4293474162 hasRelatedWork W2392187754 @default.
- W4293474162 hasRelatedWork W2536727263 @default.
- W4293474162 hasRelatedWork W2547429724 @default.
- W4293474162 hasRelatedWork W2586103959 @default.
- W4293474162 hasVolume "82" @default.
- W4293474162 isParatext "false" @default.
- W4293474162 isRetracted "false" @default.
- W4293474162 workType "article" @default.