Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293475712> ?p ?o ?g. }
- W4293475712 endingPage "275" @default.
- W4293475712 startingPage "259" @default.
- W4293475712 abstract "Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decompression are critical necessities for effective and efficient teleradiology. To cater to this need, we propose a near lossless 3D image volume compression method based on optimal multilinear singular value decomposition called “3D-VOI-OMLSVD.” The proposed strategy first eliminates any blank 2D image slices from the 3D image volume and uses the selective bounding volume (SBV) to identify and extract the volume of Interest (VOI). Following this, the VOI is decomposed with an optimal multilinear singular value decomposition (OMLSVD) to obtain the corresponding core tensor, factor matrices, and singular values that are compressed with adaptive binary range coder (ABRC), integrated as an entropy encoder. The compressed file can be transferred or transmitted and then decompressed in order to reconstruct the original image. The resultant decompressed VOI is acquired by reversing the above process and then fusing it with the background, using the bound volume coordinates associated with the compressed 3D image. The proposed method performance was tested on a variety of 3D radiological images with different imaging modalities and dimensions using quantitative evaluation metrics such as the compression rate (CR), bit rate (BR), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). Furthermore, we also investigate the impact of VOI extraction on the model performance, before comparing it with two popular compression methods, namely JPEG and JPEG2000. Our proposed method, 3D-VOI-OMLSVD, displayed a high CR value, with a maximum of 37.31, and a low BR, with the lowest reported to be 0.21. The SSIM score was consistently high, with an average performance of 0.9868, while using < 1 second for decoding the image. We observe that with VOI extraction, the compression rate increases manifold, and bit rate drops significantly, and thus reduces the encoding and decoding time to a great extent. Compared to JPEG and JPEG2000, our method consistently performs better in terms of higher CR and lower BR. The results indicate that the proposed compression methodology performs consistently to create high-quality image compressions, and overall gives a better outcome when compared against two state-of-the-art and widely used methods, JPEG and JPEG2000." @default.
- W4293475712 created "2022-08-29" @default.
- W4293475712 creator A5008454294 @default.
- W4293475712 creator A5015705215 @default.
- W4293475712 creator A5017246903 @default.
- W4293475712 creator A5065881108 @default.
- W4293475712 date "2022-08-29" @default.
- W4293475712 modified "2023-10-17" @default.
- W4293475712 title "Near Lossless Compression for 3D Radiological Images Using Optimal Multilinear Singular Value Decomposition (3D-VOI-OMLSVD)" @default.
- W4293475712 cites W1508812406 @default.
- W4293475712 cites W1572919062 @default.
- W4293475712 cites W1884695109 @default.
- W4293475712 cites W1961774439 @default.
- W4293475712 cites W1963826206 @default.
- W4293475712 cites W1967077133 @default.
- W4293475712 cites W1976874605 @default.
- W4293475712 cites W1987921959 @default.
- W4293475712 cites W1991042426 @default.
- W4293475712 cites W1999264281 @default.
- W4293475712 cites W2000215628 @default.
- W4293475712 cites W2013912476 @default.
- W4293475712 cites W2024165284 @default.
- W4293475712 cites W2035399158 @default.
- W4293475712 cites W2047175145 @default.
- W4293475712 cites W2059423883 @default.
- W4293475712 cites W2060048748 @default.
- W4293475712 cites W2099563019 @default.
- W4293475712 cites W2099741732 @default.
- W4293475712 cites W2101641981 @default.
- W4293475712 cites W2102304339 @default.
- W4293475712 cites W2107927941 @default.
- W4293475712 cites W2116160602 @default.
- W4293475712 cites W2119412403 @default.
- W4293475712 cites W2132267493 @default.
- W4293475712 cites W2133665775 @default.
- W4293475712 cites W2140196014 @default.
- W4293475712 cites W2158646765 @default.
- W4293475712 cites W2160269836 @default.
- W4293475712 cites W2172068719 @default.
- W4293475712 cites W2239858291 @default.
- W4293475712 cites W227277429 @default.
- W4293475712 cites W2488214647 @default.
- W4293475712 cites W2581059048 @default.
- W4293475712 cites W2612336981 @default.
- W4293475712 cites W2905109465 @default.
- W4293475712 cites W2917583897 @default.
- W4293475712 cites W2935381027 @default.
- W4293475712 cites W2940997852 @default.
- W4293475712 cites W3132583611 @default.
- W4293475712 cites W3151473062 @default.
- W4293475712 cites W3159708144 @default.
- W4293475712 cites W3161971430 @default.
- W4293475712 cites W4256638590 @default.
- W4293475712 cites W78661028 @default.
- W4293475712 doi "https://doi.org/10.1007/s10278-022-00687-8" @default.
- W4293475712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36038701" @default.
- W4293475712 hasPublicationYear "2022" @default.
- W4293475712 type Work @default.
- W4293475712 citedByCount "2" @default.
- W4293475712 countsByYear W42934757122023 @default.
- W4293475712 crossrefType "journal-article" @default.
- W4293475712 hasAuthorship W4293475712A5008454294 @default.
- W4293475712 hasAuthorship W4293475712A5015705215 @default.
- W4293475712 hasAuthorship W4293475712A5017246903 @default.
- W4293475712 hasAuthorship W4293475712A5065881108 @default.
- W4293475712 hasBestOaLocation W42934757121 @default.
- W4293475712 hasConcept C11413529 @default.
- W4293475712 hasConcept C115961682 @default.
- W4293475712 hasConcept C13481523 @default.
- W4293475712 hasConcept C154945302 @default.
- W4293475712 hasConcept C198751489 @default.
- W4293475712 hasConcept C202444582 @default.
- W4293475712 hasConcept C22789450 @default.
- W4293475712 hasConcept C2986737658 @default.
- W4293475712 hasConcept C31972630 @default.
- W4293475712 hasConcept C33923547 @default.
- W4293475712 hasConcept C41008148 @default.
- W4293475712 hasConcept C42704193 @default.
- W4293475712 hasConcept C69216139 @default.
- W4293475712 hasConcept C78548338 @default.
- W4293475712 hasConcept C81081738 @default.
- W4293475712 hasConcept C84392682 @default.
- W4293475712 hasConcept C9417928 @default.
- W4293475712 hasConceptScore W4293475712C11413529 @default.
- W4293475712 hasConceptScore W4293475712C115961682 @default.
- W4293475712 hasConceptScore W4293475712C13481523 @default.
- W4293475712 hasConceptScore W4293475712C154945302 @default.
- W4293475712 hasConceptScore W4293475712C198751489 @default.
- W4293475712 hasConceptScore W4293475712C202444582 @default.
- W4293475712 hasConceptScore W4293475712C22789450 @default.
- W4293475712 hasConceptScore W4293475712C2986737658 @default.
- W4293475712 hasConceptScore W4293475712C31972630 @default.
- W4293475712 hasConceptScore W4293475712C33923547 @default.
- W4293475712 hasConceptScore W4293475712C41008148 @default.
- W4293475712 hasConceptScore W4293475712C42704193 @default.
- W4293475712 hasConceptScore W4293475712C69216139 @default.
- W4293475712 hasConceptScore W4293475712C78548338 @default.
- W4293475712 hasConceptScore W4293475712C81081738 @default.