Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293490181> ?p ?o ?g. }
- W4293490181 endingPage "105043" @default.
- W4293490181 startingPage "105043" @default.
- W4293490181 abstract "The inverse identification of nonhomogeneous material properties from measured displacement/strain fields, especially when noise exists, is crucial for both engineering and material science. The conventional physics-based solutions either require time-consuming iterative calculations, or are sensitive to noise. While the new machine learning methods either need excess data for high-dimensional matchups, or mainly apply to case-by-case analyses with informed physics. In this paper, to solve the complex matchup between the measured displacement/strain fields and the randomly distributed modulus field rapidly and robustly, a novel method of deep learning in frequency domain is proposed, with discrete cosine transform (DCT) to achieve frequency domain transformation as well as dimensionality reduction and convolutional neural network (CNN) to implement learning in frequency domain. Results show that our method not only has high prediction accuracy on zero-noise samples (with L 1 -error of 4.249%) but also presents great robustness to noise (with L 1 -error of 5.085% on large-noise samples). Besides, by our method, only one-time training on a dataset with mixed noise is basically enough to deal with arbitrary levels of noise (with L 1 -errors below 5.202%), improving the efficiency significantly in practical applications. Moreover, our method can be directly transferred to neighbor sampling spaces with different sampling points, showing a great generalization. The study provides a powerful approach for inverse identification of material properties and promises for wide applications such as real-time elastography and high-throughput non-destructive evaluation techniques." @default.
- W4293490181 created "2022-08-29" @default.
- W4293490181 creator A5034069544 @default.
- W4293490181 creator A5061477282 @default.
- W4293490181 creator A5082684197 @default.
- W4293490181 date "2022-11-01" @default.
- W4293490181 modified "2023-10-18" @default.
- W4293490181 title "Deep learning in frequency domain for inverse identification of nonhomogeneous material properties" @default.
- W4293490181 cites W1606775516 @default.
- W4293490181 cites W181389286 @default.
- W4293490181 cites W1984069088 @default.
- W4293490181 cites W1985621820 @default.
- W4293490181 cites W1988289899 @default.
- W4293490181 cites W1991692264 @default.
- W4293490181 cites W1991737196 @default.
- W4293490181 cites W1992377091 @default.
- W4293490181 cites W1998235272 @default.
- W4293490181 cites W2003358624 @default.
- W4293490181 cites W2005707564 @default.
- W4293490181 cites W2018628519 @default.
- W4293490181 cites W2031614119 @default.
- W4293490181 cites W2036691366 @default.
- W4293490181 cites W2048193483 @default.
- W4293490181 cites W2055966416 @default.
- W4293490181 cites W2057727857 @default.
- W4293490181 cites W2071755981 @default.
- W4293490181 cites W2075422831 @default.
- W4293490181 cites W2083610112 @default.
- W4293490181 cites W2083660831 @default.
- W4293490181 cites W2083824703 @default.
- W4293490181 cites W2088855973 @default.
- W4293490181 cites W2105730019 @default.
- W4293490181 cites W2115974619 @default.
- W4293490181 cites W2121713565 @default.
- W4293490181 cites W2131973628 @default.
- W4293490181 cites W2133836163 @default.
- W4293490181 cites W2137726847 @default.
- W4293490181 cites W2140340863 @default.
- W4293490181 cites W2171431894 @default.
- W4293490181 cites W2337083997 @default.
- W4293490181 cites W2789959669 @default.
- W4293490181 cites W2803613189 @default.
- W4293490181 cites W2811289326 @default.
- W4293490181 cites W2883270908 @default.
- W4293490181 cites W2883482411 @default.
- W4293490181 cites W2889362692 @default.
- W4293490181 cites W2899283552 @default.
- W4293490181 cites W2946534073 @default.
- W4293490181 cites W2953227232 @default.
- W4293490181 cites W2954383691 @default.
- W4293490181 cites W2963310136 @default.
- W4293490181 cites W2980664556 @default.
- W4293490181 cites W3008186720 @default.
- W4293490181 cites W3011714719 @default.
- W4293490181 cites W3017663840 @default.
- W4293490181 cites W3020169092 @default.
- W4293490181 cites W3023654049 @default.
- W4293490181 cites W3025332206 @default.
- W4293490181 cites W3027561281 @default.
- W4293490181 cites W3046559101 @default.
- W4293490181 cites W3082790689 @default.
- W4293490181 cites W3100154313 @default.
- W4293490181 cites W3121733470 @default.
- W4293490181 cites W3128651389 @default.
- W4293490181 cites W3146033692 @default.
- W4293490181 cites W3158049979 @default.
- W4293490181 cites W3165450317 @default.
- W4293490181 cites W3166589044 @default.
- W4293490181 doi "https://doi.org/10.1016/j.jmps.2022.105043" @default.
- W4293490181 hasPublicationYear "2022" @default.
- W4293490181 type Work @default.
- W4293490181 citedByCount "3" @default.
- W4293490181 countsByYear W42934901812023 @default.
- W4293490181 crossrefType "journal-article" @default.
- W4293490181 hasAuthorship W4293490181A5034069544 @default.
- W4293490181 hasAuthorship W4293490181A5061477282 @default.
- W4293490181 hasAuthorship W4293490181A5082684197 @default.
- W4293490181 hasConcept C116834253 @default.
- W4293490181 hasConcept C134306372 @default.
- W4293490181 hasConcept C19118579 @default.
- W4293490181 hasConcept C192562407 @default.
- W4293490181 hasConcept C199343813 @default.
- W4293490181 hasConcept C207467116 @default.
- W4293490181 hasConcept C2524010 @default.
- W4293490181 hasConcept C2777686260 @default.
- W4293490181 hasConcept C28826006 @default.
- W4293490181 hasConcept C33923547 @default.
- W4293490181 hasConcept C36503486 @default.
- W4293490181 hasConcept C41008148 @default.
- W4293490181 hasConcept C59822182 @default.
- W4293490181 hasConcept C71924100 @default.
- W4293490181 hasConcept C86803240 @default.
- W4293490181 hasConceptScore W4293490181C116834253 @default.
- W4293490181 hasConceptScore W4293490181C134306372 @default.
- W4293490181 hasConceptScore W4293490181C19118579 @default.
- W4293490181 hasConceptScore W4293490181C192562407 @default.
- W4293490181 hasConceptScore W4293490181C199343813 @default.
- W4293490181 hasConceptScore W4293490181C207467116 @default.