Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293491576> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4293491576 endingPage "100247" @default.
- W4293491576 startingPage "100247" @default.
- W4293491576 abstract "3D object recognition and 6D pose estimation are crucial and fundamental endeavours for industrial assembly line automation such as robotic controlled pick-and-place. While the problem on textured objects is extensively studied, it is still an open research topic for texture-less industrial parts, e.g, solid cylinder and hollow tube, which are symmetric and appear similar in shapes from many viewing perspectives, causing pose ambiguity. Also, the industrial assembly line environment is usually cluttered and the captured data is noisy, which makes this task even more challenging. In this paper, we propose a novel object localization and pose estimation technique using RGB images and depth maps of industrial assembly parts. Our segmentation model is fully morphological and unsupervised for localizing the region of interest containing the target object extracted from the depth map. Our segmentation technique is effective in the presence of partial occlusion, multiple objects, and cluttered scenes. We use a model based approach for object recognition based on Stochastic Gradient Descent trained on features of Histogram of Oriented Gradients (HOG) and invariant moments of the region of interest containing the target object. We generate synthetic training images automatically from the CAD models of the industrial parts. We use a contour matching strategy based on Dynamic Time Warping (DTW) algorithm to estimate the optimal 6D pose of the object from a set of candidates. Experimental results show that our proposed approach competes and demonstrates advantages on the challenging T-LESS dataset compared to the state-of-the-art methods." @default.
- W4293491576 created "2022-08-29" @default.
- W4293491576 creator A5052897301 @default.
- W4293491576 creator A5058927498 @default.
- W4293491576 creator A5068683349 @default.
- W4293491576 date "2022-12-01" @default.
- W4293491576 modified "2023-10-14" @default.
- W4293491576 title "Semi-supervised learning approach for localization and pose estimation of texture-less objects in cluttered scenes" @default.
- W4293491576 cites W1536680647 @default.
- W4293491576 cites W1969883801 @default.
- W4293491576 cites W2067912884 @default.
- W4293491576 cites W2097117768 @default.
- W4293491576 cites W2101199297 @default.
- W4293491576 cites W2102605133 @default.
- W4293491576 cites W2159498975 @default.
- W4293491576 cites W2183182206 @default.
- W4293491576 cites W2194775991 @default.
- W4293491576 cites W2299361391 @default.
- W4293491576 cites W2472269674 @default.
- W4293491576 cites W2560544142 @default.
- W4293491576 cites W2570343428 @default.
- W4293491576 cites W2604236302 @default.
- W4293491576 cites W2620478555 @default.
- W4293491576 cites W2768879211 @default.
- W4293491576 cites W2781064046 @default.
- W4293491576 cites W2887843334 @default.
- W4293491576 cites W2895439318 @default.
- W4293491576 cites W2963150697 @default.
- W4293491576 cites W2964249569 @default.
- W4293491576 cites W2981854237 @default.
- W4293491576 cites W3083345301 @default.
- W4293491576 cites W3133557228 @default.
- W4293491576 cites W639708223 @default.
- W4293491576 doi "https://doi.org/10.1016/j.array.2022.100247" @default.
- W4293491576 hasPublicationYear "2022" @default.
- W4293491576 type Work @default.
- W4293491576 citedByCount "0" @default.
- W4293491576 crossrefType "journal-article" @default.
- W4293491576 hasAuthorship W4293491576A5052897301 @default.
- W4293491576 hasAuthorship W4293491576A5058927498 @default.
- W4293491576 hasAuthorship W4293491576A5068683349 @default.
- W4293491576 hasConcept C115961682 @default.
- W4293491576 hasConcept C153180895 @default.
- W4293491576 hasConcept C154945302 @default.
- W4293491576 hasConcept C157202957 @default.
- W4293491576 hasConcept C2781238097 @default.
- W4293491576 hasConcept C31972630 @default.
- W4293491576 hasConcept C36613465 @default.
- W4293491576 hasConcept C41008148 @default.
- W4293491576 hasConcept C52102323 @default.
- W4293491576 hasConcept C53533937 @default.
- W4293491576 hasConcept C82990744 @default.
- W4293491576 hasConcept C89600930 @default.
- W4293491576 hasConceptScore W4293491576C115961682 @default.
- W4293491576 hasConceptScore W4293491576C153180895 @default.
- W4293491576 hasConceptScore W4293491576C154945302 @default.
- W4293491576 hasConceptScore W4293491576C157202957 @default.
- W4293491576 hasConceptScore W4293491576C2781238097 @default.
- W4293491576 hasConceptScore W4293491576C31972630 @default.
- W4293491576 hasConceptScore W4293491576C36613465 @default.
- W4293491576 hasConceptScore W4293491576C41008148 @default.
- W4293491576 hasConceptScore W4293491576C52102323 @default.
- W4293491576 hasConceptScore W4293491576C53533937 @default.
- W4293491576 hasConceptScore W4293491576C82990744 @default.
- W4293491576 hasConceptScore W4293491576C89600930 @default.
- W4293491576 hasFunder F4320325651 @default.
- W4293491576 hasFunder F4320334593 @default.
- W4293491576 hasLocation W42934915761 @default.
- W4293491576 hasLocation W42934915762 @default.
- W4293491576 hasOpenAccess W4293491576 @default.
- W4293491576 hasPrimaryLocation W42934915761 @default.
- W4293491576 hasRelatedWork W2026349903 @default.
- W4293491576 hasRelatedWork W2794187083 @default.
- W4293491576 hasRelatedWork W2891001608 @default.
- W4293491576 hasRelatedWork W2956571887 @default.
- W4293491576 hasRelatedWork W2997897143 @default.
- W4293491576 hasRelatedWork W3083345301 @default.
- W4293491576 hasRelatedWork W3102636071 @default.
- W4293491576 hasRelatedWork W3108980762 @default.
- W4293491576 hasRelatedWork W3115178140 @default.
- W4293491576 hasRelatedWork W4320809347 @default.
- W4293491576 hasVolume "16" @default.
- W4293491576 isParatext "false" @default.
- W4293491576 isRetracted "false" @default.
- W4293491576 workType "article" @default.