Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293491646> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4293491646 endingPage "100431" @default.
- W4293491646 startingPage "100431" @default.
- W4293491646 abstract "The Internet of Things (IoT) connects schemes, programs, data management, and operations, and as they continuously assist in the corporation, they may be a fresh entryway for cyber-attacks. Presently, illegal downloading and virus attacks pose significant threats to IoT security. These risks may acquire confidential material, causing reputational and financial harm. In this paper hybrid optimization mechanism and deep learning,a frame is used to detect the attack prevention in IoT. To develop a cybersecurity warning system in a huge data set, the cybersecurity warning systems index system is first constructed, then the index factors are picked and measured, and finally, the situation evaluation is done.Numerous bio-inspired techniques were used to enhance the productivity of an IDS by lowering the data dimensionality and deleting unnecessary and noisy input. The Grey Wolf Optimization algorithm (GWO) is a developed bio-inspired algorithm that improves the efficacy of the IDS in detecting both regular and abnormal congestion in the network. The smart initialization step integrates the different pre-processing strategies to make sure that informative features are incorporated in the early development stages, has been improved. Researchers pick multi-source material in a big data environment for the identification and verification of index components and present a parallel reduction approach based on the classification significance matrix to decrease data underlying data characteristics. For the simulation of this situation, grey wolf optimization and whale optimization were combined to detect the attack prevention and the deep learning approach was presented. Utilizing system software plagiarism, the TensorFlow deep neural network is intended to classify stolen software. To reduce the noise from the signal and to zoom the significance of each word in the perspective of open-source plagiarism, the tokenization and weighting feature approaches are utilized. Malware specimens have been collected from the Mailing database for testing purposes. The experimental findings show that the suggested technique for measuring cyber security hazards in IoT has superior classification results to existing methods. Hence to detect the attack prevention in IoT process Whale with Grey wolf optimization (WGWO) and deep convolution network is used." @default.
- W4293491646 created "2022-08-29" @default.
- W4293491646 creator A5015892592 @default.
- W4293491646 creator A5025390921 @default.
- W4293491646 creator A5047384926 @default.
- W4293491646 creator A5051562042 @default.
- W4293491646 creator A5058384307 @default.
- W4293491646 creator A5076249503 @default.
- W4293491646 date "2022-12-01" @default.
- W4293491646 modified "2023-09-25" @default.
- W4293491646 title "Attack prevention in IoT through hybrid optimization mechanism and deep learning framework" @default.
- W4293491646 cites W2037026906 @default.
- W4293491646 cites W2061438946 @default.
- W4293491646 cites W2206531137 @default.
- W4293491646 cites W2592645311 @default.
- W4293491646 cites W2770073247 @default.
- W4293491646 cites W2919018018 @default.
- W4293491646 cites W2945014264 @default.
- W4293491646 cites W3024012711 @default.
- W4293491646 cites W3114938503 @default.
- W4293491646 cites W3120934607 @default.
- W4293491646 cites W3182847718 @default.
- W4293491646 cites W3188722688 @default.
- W4293491646 cites W4200059167 @default.
- W4293491646 cites W4206118796 @default.
- W4293491646 cites W4211180396 @default.
- W4293491646 cites W4211244664 @default.
- W4293491646 cites W4212919087 @default.
- W4293491646 cites W4213055350 @default.
- W4293491646 cites W4220892690 @default.
- W4293491646 cites W4220982217 @default.
- W4293491646 cites W4221036596 @default.
- W4293491646 cites W4223501034 @default.
- W4293491646 cites W4280523910 @default.
- W4293491646 doi "https://doi.org/10.1016/j.measen.2022.100431" @default.
- W4293491646 hasPublicationYear "2022" @default.
- W4293491646 type Work @default.
- W4293491646 citedByCount "2" @default.
- W4293491646 countsByYear W42934916462023 @default.
- W4293491646 crossrefType "journal-article" @default.
- W4293491646 hasAuthorship W4293491646A5015892592 @default.
- W4293491646 hasAuthorship W4293491646A5025390921 @default.
- W4293491646 hasAuthorship W4293491646A5047384926 @default.
- W4293491646 hasAuthorship W4293491646A5051562042 @default.
- W4293491646 hasAuthorship W4293491646A5058384307 @default.
- W4293491646 hasAuthorship W4293491646A5076249503 @default.
- W4293491646 hasBestOaLocation W42934916461 @default.
- W4293491646 hasConcept C108583219 @default.
- W4293491646 hasConcept C114466953 @default.
- W4293491646 hasConcept C119857082 @default.
- W4293491646 hasConcept C124101348 @default.
- W4293491646 hasConcept C154945302 @default.
- W4293491646 hasConcept C199360897 @default.
- W4293491646 hasConcept C38652104 @default.
- W4293491646 hasConcept C41008148 @default.
- W4293491646 hasConcept C50644808 @default.
- W4293491646 hasConcept C70518039 @default.
- W4293491646 hasConceptScore W4293491646C108583219 @default.
- W4293491646 hasConceptScore W4293491646C114466953 @default.
- W4293491646 hasConceptScore W4293491646C119857082 @default.
- W4293491646 hasConceptScore W4293491646C124101348 @default.
- W4293491646 hasConceptScore W4293491646C154945302 @default.
- W4293491646 hasConceptScore W4293491646C199360897 @default.
- W4293491646 hasConceptScore W4293491646C38652104 @default.
- W4293491646 hasConceptScore W4293491646C41008148 @default.
- W4293491646 hasConceptScore W4293491646C50644808 @default.
- W4293491646 hasConceptScore W4293491646C70518039 @default.
- W4293491646 hasLocation W42934916461 @default.
- W4293491646 hasLocation W42934916462 @default.
- W4293491646 hasLocation W42934916463 @default.
- W4293491646 hasOpenAccess W4293491646 @default.
- W4293491646 hasPrimaryLocation W42934916461 @default.
- W4293491646 hasRelatedWork W2795261237 @default.
- W4293491646 hasRelatedWork W3014300295 @default.
- W4293491646 hasRelatedWork W3164822677 @default.
- W4293491646 hasRelatedWork W4223943233 @default.
- W4293491646 hasRelatedWork W4225161397 @default.
- W4293491646 hasRelatedWork W4312200629 @default.
- W4293491646 hasRelatedWork W4360585206 @default.
- W4293491646 hasRelatedWork W4364306694 @default.
- W4293491646 hasRelatedWork W4380075502 @default.
- W4293491646 hasRelatedWork W4380086463 @default.
- W4293491646 hasVolume "24" @default.
- W4293491646 isParatext "false" @default.
- W4293491646 isRetracted "false" @default.
- W4293491646 workType "article" @default.