Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293491647> ?p ?o ?g. }
- W4293491647 endingPage "4676" @default.
- W4293491647 startingPage "4669" @default.
- W4293491647 abstract "To assess the contributions of circulating metabolites for improving upon the performance of the risk of ovarian malignancy algorithm (ROMA) for risk prediction of ovarian cancer among women with ovarian cysts.Metabolomic profiling was performed on an initial set of sera from 101 serous and nonserous ovarian cancer cases and 134 individuals with benign pelvic masses (BPM). Using a deep learning model, a panel consisting of seven cancer-related metabolites [diacetylspermine, diacetylspermidine, N-(3-acetamidopropyl)pyrrolidin-2-one, N-acetylneuraminate, N-acetyl-mannosamine, N-acetyl-lactosamine, and hydroxyisobutyric acid] was developed for distinguishing early-stage ovarian cancer from BPM. The performance of the metabolite panel was evaluated in an independent set of sera from 118 ovarian cancer cases and 56 subjects with BPM. The contributions of the panel for improving upon the performance of ROMA were further assessed.A 7-marker metabolite panel (7MetP) developed in the training set yielded an AUC of 0.86 [95% confidence interval (CI): 0.76-0.95] for early-stage ovarian cancer in the independent test set. The 7MetP+ROMA model had an AUC of 0.93 (95% CI: 0.84-0.98) for early-stage ovarian cancer in the test set, which was improved compared with ROMA alone [0.91 (95% CI: 0.84-0.98); likelihood ratio test P: 0.03]. In the entire specimen set, the combined 7MetP+ROMA model yielded a higher positive predictive value (0.68 vs. 0.52; one-sided P < 0.001) with improved specificity (0.89 vs. 0.78; one-sided P < 0.001) for early-stage ovarian cancer compared with ROMA alone.A blood-based metabolite panel was developed that demonstrates independent predictive ability and complements ROMA for distinguishing early-stage ovarian cancer from benign disease to better inform clinical decision making." @default.
- W4293491647 created "2022-08-29" @default.
- W4293491647 creator A5001299397 @default.
- W4293491647 creator A5009889739 @default.
- W4293491647 creator A5013889074 @default.
- W4293491647 creator A5028288310 @default.
- W4293491647 creator A5031553531 @default.
- W4293491647 creator A5040156444 @default.
- W4293491647 creator A5040696818 @default.
- W4293491647 creator A5050156017 @default.
- W4293491647 creator A5063539265 @default.
- W4293491647 creator A5069261710 @default.
- W4293491647 creator A5072417435 @default.
- W4293491647 creator A5078517744 @default.
- W4293491647 creator A5078692182 @default.
- W4293491647 creator A5081331298 @default.
- W4293491647 creator A5085589078 @default.
- W4293491647 creator A5088086867 @default.
- W4293491647 date "2022-08-29" @default.
- W4293491647 modified "2023-10-14" @default.
- W4293491647 title "A Blood-Based Metabolite Panel for Distinguishing Ovarian Cancer from Benign Pelvic Masses" @default.
- W4293491647 cites W1594188197 @default.
- W4293491647 cites W1951029407 @default.
- W4293491647 cites W1975581154 @default.
- W4293491647 cites W1980181125 @default.
- W4293491647 cites W2018077818 @default.
- W4293491647 cites W2050343685 @default.
- W4293491647 cites W2055308678 @default.
- W4293491647 cites W2062715296 @default.
- W4293491647 cites W2070058128 @default.
- W4293491647 cites W2070923004 @default.
- W4293491647 cites W2093252833 @default.
- W4293491647 cites W2104699675 @default.
- W4293491647 cites W2104993280 @default.
- W4293491647 cites W2128104740 @default.
- W4293491647 cites W2134919151 @default.
- W4293491647 cites W2135274825 @default.
- W4293491647 cites W2234115940 @default.
- W4293491647 cites W2270337160 @default.
- W4293491647 cites W2295797365 @default.
- W4293491647 cites W2312022076 @default.
- W4293491647 cites W2322237429 @default.
- W4293491647 cites W2328176404 @default.
- W4293491647 cites W2593991007 @default.
- W4293491647 cites W2623608762 @default.
- W4293491647 cites W2633266064 @default.
- W4293491647 cites W2799688212 @default.
- W4293491647 cites W2802305216 @default.
- W4293491647 cites W2885196877 @default.
- W4293491647 cites W2942092087 @default.
- W4293491647 cites W2972382386 @default.
- W4293491647 cites W2979702819 @default.
- W4293491647 cites W2987192857 @default.
- W4293491647 cites W3015108032 @default.
- W4293491647 cites W3015450697 @default.
- W4293491647 cites W3080896648 @default.
- W4293491647 cites W3095605773 @default.
- W4293491647 cites W3109479219 @default.
- W4293491647 cites W3129738285 @default.
- W4293491647 cites W3195346897 @default.
- W4293491647 doi "https://doi.org/10.1158/1078-0432.ccr-22-1113" @default.
- W4293491647 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36037307" @default.
- W4293491647 hasPublicationYear "2022" @default.
- W4293491647 type Work @default.
- W4293491647 citedByCount "2" @default.
- W4293491647 countsByYear W42934916472023 @default.
- W4293491647 crossrefType "journal-article" @default.
- W4293491647 hasAuthorship W4293491647A5001299397 @default.
- W4293491647 hasAuthorship W4293491647A5009889739 @default.
- W4293491647 hasAuthorship W4293491647A5013889074 @default.
- W4293491647 hasAuthorship W4293491647A5028288310 @default.
- W4293491647 hasAuthorship W4293491647A5031553531 @default.
- W4293491647 hasAuthorship W4293491647A5040156444 @default.
- W4293491647 hasAuthorship W4293491647A5040696818 @default.
- W4293491647 hasAuthorship W4293491647A5050156017 @default.
- W4293491647 hasAuthorship W4293491647A5063539265 @default.
- W4293491647 hasAuthorship W4293491647A5069261710 @default.
- W4293491647 hasAuthorship W4293491647A5072417435 @default.
- W4293491647 hasAuthorship W4293491647A5078517744 @default.
- W4293491647 hasAuthorship W4293491647A5078692182 @default.
- W4293491647 hasAuthorship W4293491647A5081331298 @default.
- W4293491647 hasAuthorship W4293491647A5085589078 @default.
- W4293491647 hasAuthorship W4293491647A5088086867 @default.
- W4293491647 hasBestOaLocation W42934916472 @default.
- W4293491647 hasConcept C121608353 @default.
- W4293491647 hasConcept C126322002 @default.
- W4293491647 hasConcept C143998085 @default.
- W4293491647 hasConcept C146357865 @default.
- W4293491647 hasConcept C150173356 @default.
- W4293491647 hasConcept C151730666 @default.
- W4293491647 hasConcept C2777477808 @default.
- W4293491647 hasConcept C2778324911 @default.
- W4293491647 hasConcept C2780427987 @default.
- W4293491647 hasConcept C29456083 @default.
- W4293491647 hasConcept C44249647 @default.
- W4293491647 hasConcept C71924100 @default.
- W4293491647 hasConcept C86803240 @default.
- W4293491647 hasConceptScore W4293491647C121608353 @default.