Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293492123> ?p ?o ?g. }
- W4293492123 endingPage "8" @default.
- W4293492123 startingPage "1" @default.
- W4293492123 abstract "The rolling bearing is one of the important parts of rotating machinery, while the degree of dependence on the machine is becoming heavier nowadays. Therefore, it is always necessary to monitor its operating status and diagnose faults. To better analyze the bearing vibration signal from the time domain and frequency domain and reduce information loss, we propose a model that decomposes the original bearing vibration signal with a length of 1024 by a two-layer wavelet packet. For the analysis, four low-frequency and high-frequency feature vectors of a length of 1024 are obtained as the input for the analysis model. The proposed model uses frequency subbands to automatically extract features from network input and then fuse the features. The accuracy of the model on a single load on the Case Western Reserve University (CWRU) dataset is 98−100%, which shows the diagnostic effect is satisfactory." @default.
- W4293492123 created "2022-08-29" @default.
- W4293492123 creator A5053968198 @default.
- W4293492123 creator A5061542230 @default.
- W4293492123 date "2022-08-29" @default.
- W4293492123 modified "2023-10-14" @default.
- W4293492123 title "Bearing Fault Diagnosis Based on Frequency Subbands Feature Extraction and Multibranch One-Dimension Convolutional Neural Network" @default.
- W4293492123 cites W1454493499 @default.
- W4293492123 cites W1984672166 @default.
- W4293492123 cites W2000911430 @default.
- W4293492123 cites W2035139964 @default.
- W4293492123 cites W2050252315 @default.
- W4293492123 cites W2072057898 @default.
- W4293492123 cites W2100495367 @default.
- W4293492123 cites W2122277586 @default.
- W4293492123 cites W2144354855 @default.
- W4293492123 cites W2147800946 @default.
- W4293492123 cites W2160815625 @default.
- W4293492123 cites W2171998353 @default.
- W4293492123 cites W2324537007 @default.
- W4293492123 cites W2345764662 @default.
- W4293492123 cites W2404692435 @default.
- W4293492123 cites W2562762876 @default.
- W4293492123 cites W2618530766 @default.
- W4293492123 cites W2744790985 @default.
- W4293492123 cites W2947583263 @default.
- W4293492123 cites W2952218682 @default.
- W4293492123 cites W3011171540 @default.
- W4293492123 cites W3090238656 @default.
- W4293492123 cites W3090682168 @default.
- W4293492123 cites W3110074784 @default.
- W4293492123 cites W3135034882 @default.
- W4293492123 cites W3215042157 @default.
- W4293492123 doi "https://doi.org/10.1155/2022/7451825" @default.
- W4293492123 hasPublicationYear "2022" @default.
- W4293492123 type Work @default.
- W4293492123 citedByCount "0" @default.
- W4293492123 crossrefType "journal-article" @default.
- W4293492123 hasAuthorship W4293492123A5053968198 @default.
- W4293492123 hasAuthorship W4293492123A5061542230 @default.
- W4293492123 hasBestOaLocation W42934921231 @default.
- W4293492123 hasConcept C103824480 @default.
- W4293492123 hasConcept C119599485 @default.
- W4293492123 hasConcept C121332964 @default.
- W4293492123 hasConcept C127313418 @default.
- W4293492123 hasConcept C127413603 @default.
- W4293492123 hasConcept C138885662 @default.
- W4293492123 hasConcept C141353440 @default.
- W4293492123 hasConcept C153180895 @default.
- W4293492123 hasConcept C154945302 @default.
- W4293492123 hasConcept C165205528 @default.
- W4293492123 hasConcept C175551986 @default.
- W4293492123 hasConcept C19118579 @default.
- W4293492123 hasConcept C198394728 @default.
- W4293492123 hasConcept C199360897 @default.
- W4293492123 hasConcept C199978012 @default.
- W4293492123 hasConcept C202444582 @default.
- W4293492123 hasConcept C24890656 @default.
- W4293492123 hasConcept C2776401178 @default.
- W4293492123 hasConcept C2779843651 @default.
- W4293492123 hasConcept C31972630 @default.
- W4293492123 hasConcept C33676613 @default.
- W4293492123 hasConcept C33923547 @default.
- W4293492123 hasConcept C41008148 @default.
- W4293492123 hasConcept C41895202 @default.
- W4293492123 hasConcept C47432892 @default.
- W4293492123 hasConcept C52622490 @default.
- W4293492123 hasConcept C81363708 @default.
- W4293492123 hasConceptScore W4293492123C103824480 @default.
- W4293492123 hasConceptScore W4293492123C119599485 @default.
- W4293492123 hasConceptScore W4293492123C121332964 @default.
- W4293492123 hasConceptScore W4293492123C127313418 @default.
- W4293492123 hasConceptScore W4293492123C127413603 @default.
- W4293492123 hasConceptScore W4293492123C138885662 @default.
- W4293492123 hasConceptScore W4293492123C141353440 @default.
- W4293492123 hasConceptScore W4293492123C153180895 @default.
- W4293492123 hasConceptScore W4293492123C154945302 @default.
- W4293492123 hasConceptScore W4293492123C165205528 @default.
- W4293492123 hasConceptScore W4293492123C175551986 @default.
- W4293492123 hasConceptScore W4293492123C19118579 @default.
- W4293492123 hasConceptScore W4293492123C198394728 @default.
- W4293492123 hasConceptScore W4293492123C199360897 @default.
- W4293492123 hasConceptScore W4293492123C199978012 @default.
- W4293492123 hasConceptScore W4293492123C202444582 @default.
- W4293492123 hasConceptScore W4293492123C24890656 @default.
- W4293492123 hasConceptScore W4293492123C2776401178 @default.
- W4293492123 hasConceptScore W4293492123C2779843651 @default.
- W4293492123 hasConceptScore W4293492123C31972630 @default.
- W4293492123 hasConceptScore W4293492123C33676613 @default.
- W4293492123 hasConceptScore W4293492123C33923547 @default.
- W4293492123 hasConceptScore W4293492123C41008148 @default.
- W4293492123 hasConceptScore W4293492123C41895202 @default.
- W4293492123 hasConceptScore W4293492123C47432892 @default.
- W4293492123 hasConceptScore W4293492123C52622490 @default.
- W4293492123 hasConceptScore W4293492123C81363708 @default.
- W4293492123 hasFunder F4320322108 @default.
- W4293492123 hasLocation W42934921231 @default.
- W4293492123 hasLocation W42934921232 @default.