Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293492272> ?p ?o ?g. }
- W4293492272 endingPage "e0273764" @default.
- W4293492272 startingPage "e0273764" @default.
- W4293492272 abstract "Drug-drug interaction (DDI) prediction has received considerable attention from industry and academia. Most existing methods predict DDIs from drug attributes or relationships with neighbors, which does not guarantee that informative drug embeddings for prediction will be obtained. To address this limitation, we propose a multitype drug interaction prediction method based on the deep fusion of drug features and topological relationships, abbreviated DM-DDI. The proposed method adopts a deep fusion strategy to combine drug features and topologies to learn representative drug embeddings for DDI prediction. Specifically, a deep neural network model is first used on the drug feature matrix to extract feature information, while a graph convolutional network model is employed to capture structural information from the adjacency matrix. Then, we adopt delivery operations that allow the two models to exchange information between layers, as well as an attention mechanism for a weighted fusion of the two learned embeddings before the output layer. Finally, the unified drug embeddings for the downstream task are obtained. We conducted extensive experiments on real-world datasets, the experimental results demonstrated that DM-DDI achieved more accurate prediction results than state-of-the-art baselines. Furthermore, in two tasks that are more similar to real-world scenarios, DM-DDI outperformed other prediction methods for unknown drugs." @default.
- W4293492272 created "2022-08-29" @default.
- W4293492272 creator A5006105597 @default.
- W4293492272 creator A5018619642 @default.
- W4293492272 creator A5041913431 @default.
- W4293492272 creator A5052420420 @default.
- W4293492272 creator A5085556432 @default.
- W4293492272 date "2022-08-29" @default.
- W4293492272 modified "2023-09-27" @default.
- W4293492272 title "Multitype drug interaction prediction based on the deep fusion of drug features and topological relationships" @default.
- W4293492272 cites W1018047830 @default.
- W4293492272 cites W2005369574 @default.
- W4293492272 cites W2013181441 @default.
- W4293492272 cites W2109482131 @default.
- W4293492272 cites W2135037015 @default.
- W4293492272 cites W2145877930 @default.
- W4293492272 cites W2200548835 @default.
- W4293492272 cites W2387462954 @default.
- W4293492272 cites W2393319904 @default.
- W4293492272 cites W2415243320 @default.
- W4293492272 cites W2473876819 @default.
- W4293492272 cites W2591704587 @default.
- W4293492272 cites W2785001576 @default.
- W4293492272 cites W2786016794 @default.
- W4293492272 cites W2798133167 @default.
- W4293492272 cites W2799720196 @default.
- W4293492272 cites W2802200505 @default.
- W4293492272 cites W2910406387 @default.
- W4293492272 cites W2911964244 @default.
- W4293492272 cites W2937594636 @default.
- W4293492272 cites W2946751505 @default.
- W4293492272 cites W2962756421 @default.
- W4293492272 cites W2965993245 @default.
- W4293492272 cites W2969457089 @default.
- W4293492272 cites W2977707586 @default.
- W4293492272 cites W3005363097 @default.
- W4293492272 cites W3013557219 @default.
- W4293492272 cites W3024894285 @default.
- W4293492272 cites W3033689705 @default.
- W4293492272 cites W3035011799 @default.
- W4293492272 cites W3035286001 @default.
- W4293492272 cites W3088680691 @default.
- W4293492272 cites W3094497296 @default.
- W4293492272 cites W3101709902 @default.
- W4293492272 cites W3105705953 @default.
- W4293492272 cites W3108458441 @default.
- W4293492272 cites W3115722135 @default.
- W4293492272 cites W3195937938 @default.
- W4293492272 cites W3206601677 @default.
- W4293492272 cites W4200565005 @default.
- W4293492272 cites W4210567899 @default.
- W4293492272 cites W4286373989 @default.
- W4293492272 doi "https://doi.org/10.1371/journal.pone.0273764" @default.
- W4293492272 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36037188" @default.
- W4293492272 hasPublicationYear "2022" @default.
- W4293492272 type Work @default.
- W4293492272 citedByCount "5" @default.
- W4293492272 countsByYear W42934922722022 @default.
- W4293492272 countsByYear W42934922722023 @default.
- W4293492272 crossrefType "journal-article" @default.
- W4293492272 hasAuthorship W4293492272A5006105597 @default.
- W4293492272 hasAuthorship W4293492272A5018619642 @default.
- W4293492272 hasAuthorship W4293492272A5041913431 @default.
- W4293492272 hasAuthorship W4293492272A5052420420 @default.
- W4293492272 hasAuthorship W4293492272A5085556432 @default.
- W4293492272 hasBestOaLocation W42934922721 @default.
- W4293492272 hasConcept C104317684 @default.
- W4293492272 hasConcept C105795698 @default.
- W4293492272 hasConcept C108583219 @default.
- W4293492272 hasConcept C111919701 @default.
- W4293492272 hasConcept C119857082 @default.
- W4293492272 hasConcept C132525143 @default.
- W4293492272 hasConcept C138885662 @default.
- W4293492272 hasConcept C154945302 @default.
- W4293492272 hasConcept C180356752 @default.
- W4293492272 hasConcept C185592680 @default.
- W4293492272 hasConcept C199845137 @default.
- W4293492272 hasConcept C2776401178 @default.
- W4293492272 hasConcept C2780035454 @default.
- W4293492272 hasConcept C2989108626 @default.
- W4293492272 hasConcept C33923547 @default.
- W4293492272 hasConcept C38764148 @default.
- W4293492272 hasConcept C41008148 @default.
- W4293492272 hasConcept C41895202 @default.
- W4293492272 hasConcept C55105296 @default.
- W4293492272 hasConcept C55493867 @default.
- W4293492272 hasConcept C71924100 @default.
- W4293492272 hasConcept C80444323 @default.
- W4293492272 hasConcept C81363708 @default.
- W4293492272 hasConcept C98274493 @default.
- W4293492272 hasConceptScore W4293492272C104317684 @default.
- W4293492272 hasConceptScore W4293492272C105795698 @default.
- W4293492272 hasConceptScore W4293492272C108583219 @default.
- W4293492272 hasConceptScore W4293492272C111919701 @default.
- W4293492272 hasConceptScore W4293492272C119857082 @default.
- W4293492272 hasConceptScore W4293492272C132525143 @default.
- W4293492272 hasConceptScore W4293492272C138885662 @default.
- W4293492272 hasConceptScore W4293492272C154945302 @default.