Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293492273> ?p ?o ?g. }
- W4293492273 endingPage "2385" @default.
- W4293492273 startingPage "2376" @default.
- W4293492273 abstract "Available treatments for Parkinson's disease (PD) are only partially or transiently effective. Identifying existing molecules that may present a therapeutic or preventive benefit for PD (drug repositioning) is thus of utmost interest.We aimed at detecting potentially protective associations between marketed drugs and PD through a large-scale automated screening strategy.We implemented a machine learning (ML) algorithm combining subsampling and lasso logistic regression in a case-control study nested in the French national health data system. Our study population comprised 40,760 incident PD patients identified by a validated algorithm during 2016 to 2018 and 176,395 controls of similar age, sex, and region of residence, all followed since 2006. Drug exposure was defined at the chemical subgroup level, then at the substance level of the Anatomical Therapeutic Chemical (ATC) classification considering the frequency of prescriptions over a 2-year period starting 10 years before the index date to limit reverse causation bias. Sensitivity analyses were conducted using a more specific definition of PD status.Six drug subgroups were detected by our algorithm among the 374 screened. Sulfonamide diuretics (ATC-C03CA), in particular furosemide (C03CA01), showed the most robust signal. Other signals included adrenergics in combination with anticholinergics (R03AL) and insulins and analogues (A10AD).We identified several signals that deserve to be confirmed in large studies with appropriate consideration of the potential for reverse causation. Our results illustrate the value of ML-based signal detection algorithms for identifying drugs inversely associated with PD risk in health-care databases. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society." @default.
- W4293492273 created "2022-08-29" @default.
- W4293492273 creator A5002074937 @default.
- W4293492273 creator A5018079238 @default.
- W4293492273 creator A5025485223 @default.
- W4293492273 creator A5036908470 @default.
- W4293492273 creator A5048270403 @default.
- W4293492273 creator A5056052441 @default.
- W4293492273 creator A5057400913 @default.
- W4293492273 creator A5058392597 @default.
- W4293492273 creator A5070139127 @default.
- W4293492273 creator A5077142833 @default.
- W4293492273 date "2022-08-29" @default.
- W4293492273 modified "2023-10-12" @default.
- W4293492273 title "Identifying Protective Drugs for Parkinson's Disease in Health‐Care Databases Using Machine Learning" @default.
- W4293492273 cites W112113049 @default.
- W4293492273 cites W1417309998 @default.
- W4293492273 cites W1838285414 @default.
- W4293492273 cites W1967862917 @default.
- W4293492273 cites W1993790483 @default.
- W4293492273 cites W2016722530 @default.
- W4293492273 cites W2062941476 @default.
- W4293492273 cites W2069335131 @default.
- W4293492273 cites W2079878023 @default.
- W4293492273 cites W2082213488 @default.
- W4293492273 cites W2107924351 @default.
- W4293492273 cites W2147392200 @default.
- W4293492273 cites W2170141518 @default.
- W4293492273 cites W2344424577 @default.
- W4293492273 cites W2489731894 @default.
- W4293492273 cites W2528242093 @default.
- W4293492273 cites W2587180143 @default.
- W4293492273 cites W2741789802 @default.
- W4293492273 cites W2753292637 @default.
- W4293492273 cites W2753466611 @default.
- W4293492273 cites W2802334898 @default.
- W4293492273 cites W2805183985 @default.
- W4293492273 cites W2809540950 @default.
- W4293492273 cites W2888217317 @default.
- W4293492273 cites W2892004388 @default.
- W4293492273 cites W2897307831 @default.
- W4293492273 cites W2901519529 @default.
- W4293492273 cites W2945544296 @default.
- W4293492273 cites W2954431205 @default.
- W4293492273 cites W3019350328 @default.
- W4293492273 cites W3024881468 @default.
- W4293492273 cites W3025810282 @default.
- W4293492273 cites W3033858710 @default.
- W4293492273 cites W3099918881 @default.
- W4293492273 cites W3109088591 @default.
- W4293492273 cites W3116650048 @default.
- W4293492273 cites W3154630939 @default.
- W4293492273 cites W3157419554 @default.
- W4293492273 cites W3159965121 @default.
- W4293492273 cites W3181748935 @default.
- W4293492273 cites W3206128900 @default.
- W4293492273 cites W4210851286 @default.
- W4293492273 cites W3166210850 @default.
- W4293492273 doi "https://doi.org/10.1002/mds.29205" @default.
- W4293492273 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36054665" @default.
- W4293492273 hasPublicationYear "2022" @default.
- W4293492273 type Work @default.
- W4293492273 citedByCount "5" @default.
- W4293492273 countsByYear W42934922732023 @default.
- W4293492273 crossrefType "journal-article" @default.
- W4293492273 hasAuthorship W4293492273A5002074937 @default.
- W4293492273 hasAuthorship W4293492273A5018079238 @default.
- W4293492273 hasAuthorship W4293492273A5025485223 @default.
- W4293492273 hasAuthorship W4293492273A5036908470 @default.
- W4293492273 hasAuthorship W4293492273A5048270403 @default.
- W4293492273 hasAuthorship W4293492273A5056052441 @default.
- W4293492273 hasAuthorship W4293492273A5057400913 @default.
- W4293492273 hasAuthorship W4293492273A5058392597 @default.
- W4293492273 hasAuthorship W4293492273A5070139127 @default.
- W4293492273 hasAuthorship W4293492273A5077142833 @default.
- W4293492273 hasBestOaLocation W42934922732 @default.
- W4293492273 hasConcept C11413529 @default.
- W4293492273 hasConcept C119857082 @default.
- W4293492273 hasConcept C126322002 @default.
- W4293492273 hasConcept C136764020 @default.
- W4293492273 hasConcept C151956035 @default.
- W4293492273 hasConcept C154945302 @default.
- W4293492273 hasConcept C2426938 @default.
- W4293492273 hasConcept C2779134260 @default.
- W4293492273 hasConcept C2780035454 @default.
- W4293492273 hasConcept C2908647359 @default.
- W4293492273 hasConcept C37616216 @default.
- W4293492273 hasConcept C41008148 @default.
- W4293492273 hasConcept C57658597 @default.
- W4293492273 hasConcept C71924100 @default.
- W4293492273 hasConcept C77088390 @default.
- W4293492273 hasConcept C98274493 @default.
- W4293492273 hasConcept C99454951 @default.
- W4293492273 hasConceptScore W4293492273C11413529 @default.
- W4293492273 hasConceptScore W4293492273C119857082 @default.
- W4293492273 hasConceptScore W4293492273C126322002 @default.
- W4293492273 hasConceptScore W4293492273C136764020 @default.
- W4293492273 hasConceptScore W4293492273C151956035 @default.