Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293493875> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4293493875 endingPage "22" @default.
- W4293493875 startingPage "1" @default.
- W4293493875 abstract "Accidents occur frequently while constructing deep foundation pits for metro stations, thereby risking substantial economic losses and casualties. To subject the construction of such pits to scientific and rational risk assessment and overcome the limitations of existing risk evaluation models and risk fusion problems, proposed here is a risk-assessment model for such pits based on fuzzy evidential reasoning and the two-tuple linguistic analytic network process (TL-ANP). First, the risk loss indicators are optimized, the weights of different risk events and of each risk loss indicator in the metro-station deep-foundation-pit construction project are calculated using TL-ANP, and trapezoidal fuzzy numbers are used to describe the occurrence probability of each risk event and loss. Second, relying on a table of expert weight indices, the best–worst method based on generalized interval-valued trapezoidal fuzzy numbers is used to determine the weights of experts. Finally, the overall risk grade of the construction project is evaluated by aggregating the risk levels of all risk events through an evidence-reasoning algorithm. The analysis results for a deep foundation pit for a station on Line 5 of Nanning Metro show that the model provides a quantitative basis for determining expert weights and risk loss weights reasonably and improving the reliability of the evaluation system. Also, not only does applying the method show that such a construction project can be judged as having a certain risk grade, but more importantly it can identify the key factors and loss indicators affecting the overall risk grade of the pit, whereupon risk control measures can be adopted in a targeted manner. In comparison with traditional methods, the proposed method is shown to be practical and effective, providing a reference basis for analyzing the risks of similar projects in the future and guaranteeing construction safety." @default.
- W4293493875 created "2022-08-29" @default.
- W4293493875 creator A5031433105 @default.
- W4293493875 creator A5059751900 @default.
- W4293493875 creator A5075955694 @default.
- W4293493875 creator A5089436626 @default.
- W4293493875 date "2022-08-29" @default.
- W4293493875 modified "2023-10-15" @default.
- W4293493875 title "Risk Assessment of Constructing Deep Foundation Pits for Metro Stations Based on Fuzzy Evidence Reasoning and Two-tuple Linguistic Analytic Network Process" @default.
- W4293493875 cites W2016179164 @default.
- W4293493875 cites W2033401964 @default.
- W4293493875 cites W2065262720 @default.
- W4293493875 cites W2066555877 @default.
- W4293493875 cites W2093593364 @default.
- W4293493875 cites W2108015251 @default.
- W4293493875 cites W2113413672 @default.
- W4293493875 cites W2117759566 @default.
- W4293493875 cites W2117827905 @default.
- W4293493875 cites W2120160105 @default.
- W4293493875 cites W2145292327 @default.
- W4293493875 cites W2189718286 @default.
- W4293493875 cites W2565673674 @default.
- W4293493875 cites W2606438241 @default.
- W4293493875 cites W2755885017 @default.
- W4293493875 cites W2996045208 @default.
- W4293493875 cites W2997614982 @default.
- W4293493875 cites W3036331690 @default.
- W4293493875 cites W3096222860 @default.
- W4293493875 cites W3145842051 @default.
- W4293493875 cites W4211007335 @default.
- W4293493875 doi "https://doi.org/10.1155/2022/2650627" @default.
- W4293493875 hasPublicationYear "2022" @default.
- W4293493875 type Work @default.
- W4293493875 citedByCount "0" @default.
- W4293493875 crossrefType "journal-article" @default.
- W4293493875 hasAuthorship W4293493875A5031433105 @default.
- W4293493875 hasAuthorship W4293493875A5059751900 @default.
- W4293493875 hasAuthorship W4293493875A5075955694 @default.
- W4293493875 hasAuthorship W4293493875A5089436626 @default.
- W4293493875 hasBestOaLocation W42934938751 @default.
- W4293493875 hasConcept C111919701 @default.
- W4293493875 hasConcept C112930515 @default.
- W4293493875 hasConcept C121332964 @default.
- W4293493875 hasConcept C12174686 @default.
- W4293493875 hasConcept C127413603 @default.
- W4293493875 hasConcept C154945302 @default.
- W4293493875 hasConcept C163258240 @default.
- W4293493875 hasConcept C166957645 @default.
- W4293493875 hasConcept C176459437 @default.
- W4293493875 hasConcept C205649164 @default.
- W4293493875 hasConcept C2780966255 @default.
- W4293493875 hasConcept C38652104 @default.
- W4293493875 hasConcept C41008148 @default.
- W4293493875 hasConcept C42475967 @default.
- W4293493875 hasConcept C43214815 @default.
- W4293493875 hasConcept C58166 @default.
- W4293493875 hasConcept C62520636 @default.
- W4293493875 hasConcept C71924100 @default.
- W4293493875 hasConcept C87345402 @default.
- W4293493875 hasConcept C98045186 @default.
- W4293493875 hasConceptScore W4293493875C111919701 @default.
- W4293493875 hasConceptScore W4293493875C112930515 @default.
- W4293493875 hasConceptScore W4293493875C121332964 @default.
- W4293493875 hasConceptScore W4293493875C12174686 @default.
- W4293493875 hasConceptScore W4293493875C127413603 @default.
- W4293493875 hasConceptScore W4293493875C154945302 @default.
- W4293493875 hasConceptScore W4293493875C163258240 @default.
- W4293493875 hasConceptScore W4293493875C166957645 @default.
- W4293493875 hasConceptScore W4293493875C176459437 @default.
- W4293493875 hasConceptScore W4293493875C205649164 @default.
- W4293493875 hasConceptScore W4293493875C2780966255 @default.
- W4293493875 hasConceptScore W4293493875C38652104 @default.
- W4293493875 hasConceptScore W4293493875C41008148 @default.
- W4293493875 hasConceptScore W4293493875C42475967 @default.
- W4293493875 hasConceptScore W4293493875C43214815 @default.
- W4293493875 hasConceptScore W4293493875C58166 @default.
- W4293493875 hasConceptScore W4293493875C62520636 @default.
- W4293493875 hasConceptScore W4293493875C71924100 @default.
- W4293493875 hasConceptScore W4293493875C87345402 @default.
- W4293493875 hasConceptScore W4293493875C98045186 @default.
- W4293493875 hasFunder F4320321001 @default.
- W4293493875 hasLocation W42934938751 @default.
- W4293493875 hasOpenAccess W4293493875 @default.
- W4293493875 hasPrimaryLocation W42934938751 @default.
- W4293493875 hasRelatedWork W2004212487 @default.
- W4293493875 hasRelatedWork W2014384157 @default.
- W4293493875 hasRelatedWork W2103113646 @default.
- W4293493875 hasRelatedWork W2365062568 @default.
- W4293493875 hasRelatedWork W2369639539 @default.
- W4293493875 hasRelatedWork W2383992581 @default.
- W4293493875 hasRelatedWork W2389427950 @default.
- W4293493875 hasRelatedWork W2559560406 @default.
- W4293493875 hasRelatedWork W2899084033 @default.
- W4293493875 hasRelatedWork W3174929305 @default.
- W4293493875 hasVolume "2022" @default.
- W4293493875 isParatext "false" @default.
- W4293493875 isRetracted "false" @default.
- W4293493875 workType "article" @default.