Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293494098> ?p ?o ?g. }
- W4293494098 endingPage "17" @default.
- W4293494098 startingPage "1" @default.
- W4293494098 abstract "The transportation system of those countries has a huge traffic flow is bearing great pressure on transportation planning and management. Vehicle path planning is one of the effective ways to alleviate such pressure. Deep reinforcement learning (DRL), as a state-of-the-art solution method in vehicle path planning, can better balance the ability and complexity of the algorithm to reflect the real situation. However, DRL has its own disadvantages of higher search cost and earlier convergence to the local optimum, as vehicle path planning issues are usually in a complex environment, and their action set can be diverse. In this paper, a mixed policy gradient actor-critic (AC) model with random escape term and filter operation is proposed, in which the policy weight is both data driven and model driven. The empirical data-driven method is used to improve the poor asymptotic performance, and the model-driven method is used to ensure the convergence speed of the whole model. At the same time, in order to avoid the model converging local optimum, a random escape term has been added in the policy weight update process to overcome the problem that it is difficult to optimize the non-convex loss function, and the random escape term can help to explore the policy in more directions. In addition, filter optimization has been innovatively introduced in this paper, and the step size of each iteration of the model is selected through the filter optimization algorithm to achieve the better iterative effect. Numerical experiment results have shown that the model proposed in this paper can not only improve the accuracy of the solution without losing the accuracy but also speed up the convergence speed and improve the utilization of data." @default.
- W4293494098 created "2022-08-29" @default.
- W4293494098 creator A5001471396 @default.
- W4293494098 creator A5017586277 @default.
- W4293494098 creator A5032023196 @default.
- W4293494098 creator A5081081129 @default.
- W4293494098 creator A5090205682 @default.
- W4293494098 date "2022-08-29" @default.
- W4293494098 modified "2023-10-14" @default.
- W4293494098 title "A Vehicle Path Planning Algorithm Based on Mixed Policy Gradient Actor-Critic Model with Random Escape Term and Filter Optimization" @default.
- W4293494098 cites W1967562665 @default.
- W4293494098 cites W2013995417 @default.
- W4293494098 cites W2016782412 @default.
- W4293494098 cites W2048799772 @default.
- W4293494098 cites W2054001938 @default.
- W4293494098 cites W2094387729 @default.
- W4293494098 cites W2102223648 @default.
- W4293494098 cites W2119717200 @default.
- W4293494098 cites W2164642883 @default.
- W4293494098 cites W2569132502 @default.
- W4293494098 cites W2613089901 @default.
- W4293494098 cites W2623480462 @default.
- W4293494098 cites W2908084908 @default.
- W4293494098 cites W2949485541 @default.
- W4293494098 cites W2971254261 @default.
- W4293494098 cites W2975616285 @default.
- W4293494098 cites W2981679676 @default.
- W4293494098 cites W3015743280 @default.
- W4293494098 cites W3044015199 @default.
- W4293494098 cites W3045965871 @default.
- W4293494098 cites W3046207687 @default.
- W4293494098 cites W3082141066 @default.
- W4293494098 cites W3090027660 @default.
- W4293494098 cites W3107376020 @default.
- W4293494098 cites W3126610903 @default.
- W4293494098 cites W3127561923 @default.
- W4293494098 cites W3141583383 @default.
- W4293494098 cites W3162849307 @default.
- W4293494098 cites W3164429027 @default.
- W4293494098 cites W3177464467 @default.
- W4293494098 cites W3197234345 @default.
- W4293494098 cites W3217645262 @default.
- W4293494098 cites W4205286347 @default.
- W4293494098 cites W4214717370 @default.
- W4293494098 cites W4285261234 @default.
- W4293494098 doi "https://doi.org/10.1155/2022/3679145" @default.
- W4293494098 hasPublicationYear "2022" @default.
- W4293494098 type Work @default.
- W4293494098 citedByCount "0" @default.
- W4293494098 crossrefType "journal-article" @default.
- W4293494098 hasAuthorship W4293494098A5001471396 @default.
- W4293494098 hasAuthorship W4293494098A5017586277 @default.
- W4293494098 hasAuthorship W4293494098A5032023196 @default.
- W4293494098 hasAuthorship W4293494098A5081081129 @default.
- W4293494098 hasAuthorship W4293494098A5090205682 @default.
- W4293494098 hasBestOaLocation W42934940981 @default.
- W4293494098 hasConcept C106131492 @default.
- W4293494098 hasConcept C121332964 @default.
- W4293494098 hasConcept C126255220 @default.
- W4293494098 hasConcept C154945302 @default.
- W4293494098 hasConcept C162324750 @default.
- W4293494098 hasConcept C177264268 @default.
- W4293494098 hasConcept C199360897 @default.
- W4293494098 hasConcept C2777303404 @default.
- W4293494098 hasConcept C2777735758 @default.
- W4293494098 hasConcept C31972630 @default.
- W4293494098 hasConcept C33923547 @default.
- W4293494098 hasConcept C41008148 @default.
- W4293494098 hasConcept C50522688 @default.
- W4293494098 hasConcept C61797465 @default.
- W4293494098 hasConcept C62520636 @default.
- W4293494098 hasConcept C81074085 @default.
- W4293494098 hasConcept C90509273 @default.
- W4293494098 hasConcept C97541855 @default.
- W4293494098 hasConceptScore W4293494098C106131492 @default.
- W4293494098 hasConceptScore W4293494098C121332964 @default.
- W4293494098 hasConceptScore W4293494098C126255220 @default.
- W4293494098 hasConceptScore W4293494098C154945302 @default.
- W4293494098 hasConceptScore W4293494098C162324750 @default.
- W4293494098 hasConceptScore W4293494098C177264268 @default.
- W4293494098 hasConceptScore W4293494098C199360897 @default.
- W4293494098 hasConceptScore W4293494098C2777303404 @default.
- W4293494098 hasConceptScore W4293494098C2777735758 @default.
- W4293494098 hasConceptScore W4293494098C31972630 @default.
- W4293494098 hasConceptScore W4293494098C33923547 @default.
- W4293494098 hasConceptScore W4293494098C41008148 @default.
- W4293494098 hasConceptScore W4293494098C50522688 @default.
- W4293494098 hasConceptScore W4293494098C61797465 @default.
- W4293494098 hasConceptScore W4293494098C62520636 @default.
- W4293494098 hasConceptScore W4293494098C81074085 @default.
- W4293494098 hasConceptScore W4293494098C90509273 @default.
- W4293494098 hasConceptScore W4293494098C97541855 @default.
- W4293494098 hasFunder F4320321885 @default.
- W4293494098 hasLocation W42934940981 @default.
- W4293494098 hasLocation W42934940982 @default.
- W4293494098 hasOpenAccess W4293494098 @default.
- W4293494098 hasPrimaryLocation W42934940981 @default.
- W4293494098 hasRelatedWork W2108886361 @default.