Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293497031> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4293497031 abstract "It is well-known in image processing that computational cost increases rapidly with the number and dimensions of the images to be processed. Several fields, such as medical imaging, routinely use numerous very large images, which might also be 3D and/or captured at several frequency bands, all adding to the computational expense. Multiresolution analysis is a method of increasing the efficiency of the segmentation process. One multiresolution approach is the coarse-to-fine segmentation strategy, whereby the segmentation starts at a coarse resolution and is then fine-tuned during subsequent steps. The starting resolution for segmentation is generally selected arbitrarily with no clear selection criteria. The research reported in this paper showed that starting from different resolutions for image segmentation results in different accuracies and computational times, even for images of the same category (depicting similar scenes or objects). An automated method for resolution selection for an input image would thus be beneficial. This paper introduces a framework for the automated selection of the best resolution for image segmentation. We propose a measure for defining the best resolution based on user/system criteria, offering a trade-off between accuracy and computation time. A learning approach is then introduced for the selection of the resolution, whereby extracted image features are mapped to the previously determined best resolution. In the learning process, class (i.e., resolution) distribution is generally imbalanced, making effective learning from the data difficult. Experiments conducted with three datasets using two different segmentation algorithms show that the resolutions selected through learning enable much faster segmentation than the original ones, while retaining at least the original accuracy." @default.
- W4293497031 created "2022-08-29" @default.
- W4293497031 creator A5038566332 @default.
- W4293497031 creator A5043297335 @default.
- W4293497031 creator A5077727968 @default.
- W4293497031 date "2016-05-22" @default.
- W4293497031 modified "2023-09-27" @default.
- W4293497031 title "Automated Resolution Selection for Image Segmentation" @default.
- W4293497031 doi "https://doi.org/10.48550/arxiv.1605.06820" @default.
- W4293497031 hasPublicationYear "2016" @default.
- W4293497031 type Work @default.
- W4293497031 citedByCount "0" @default.
- W4293497031 crossrefType "posted-content" @default.
- W4293497031 hasAuthorship W4293497031A5038566332 @default.
- W4293497031 hasAuthorship W4293497031A5043297335 @default.
- W4293497031 hasAuthorship W4293497031A5077727968 @default.
- W4293497031 hasBestOaLocation W42934970311 @default.
- W4293497031 hasConcept C111919701 @default.
- W4293497031 hasConcept C11413529 @default.
- W4293497031 hasConcept C115961682 @default.
- W4293497031 hasConcept C124504099 @default.
- W4293497031 hasConcept C138268822 @default.
- W4293497031 hasConcept C153180895 @default.
- W4293497031 hasConcept C154945302 @default.
- W4293497031 hasConcept C205372480 @default.
- W4293497031 hasConcept C25694479 @default.
- W4293497031 hasConcept C31972630 @default.
- W4293497031 hasConcept C41008148 @default.
- W4293497031 hasConcept C45374587 @default.
- W4293497031 hasConcept C65885262 @default.
- W4293497031 hasConcept C81917197 @default.
- W4293497031 hasConcept C89600930 @default.
- W4293497031 hasConcept C98045186 @default.
- W4293497031 hasConceptScore W4293497031C111919701 @default.
- W4293497031 hasConceptScore W4293497031C11413529 @default.
- W4293497031 hasConceptScore W4293497031C115961682 @default.
- W4293497031 hasConceptScore W4293497031C124504099 @default.
- W4293497031 hasConceptScore W4293497031C138268822 @default.
- W4293497031 hasConceptScore W4293497031C153180895 @default.
- W4293497031 hasConceptScore W4293497031C154945302 @default.
- W4293497031 hasConceptScore W4293497031C205372480 @default.
- W4293497031 hasConceptScore W4293497031C25694479 @default.
- W4293497031 hasConceptScore W4293497031C31972630 @default.
- W4293497031 hasConceptScore W4293497031C41008148 @default.
- W4293497031 hasConceptScore W4293497031C45374587 @default.
- W4293497031 hasConceptScore W4293497031C65885262 @default.
- W4293497031 hasConceptScore W4293497031C81917197 @default.
- W4293497031 hasConceptScore W4293497031C89600930 @default.
- W4293497031 hasConceptScore W4293497031C98045186 @default.
- W4293497031 hasLocation W42934970311 @default.
- W4293497031 hasLocation W42934970312 @default.
- W4293497031 hasOpenAccess W4293497031 @default.
- W4293497031 hasPrimaryLocation W42934970311 @default.
- W4293497031 hasRelatedWork W1507266234 @default.
- W4293497031 hasRelatedWork W1631910785 @default.
- W4293497031 hasRelatedWork W1669643531 @default.
- W4293497031 hasRelatedWork W2069711651 @default.
- W4293497031 hasRelatedWork W2117664411 @default.
- W4293497031 hasRelatedWork W2117933325 @default.
- W4293497031 hasRelatedWork W2154333700 @default.
- W4293497031 hasRelatedWork W2558375057 @default.
- W4293497031 hasRelatedWork W3197341992 @default.
- W4293497031 hasRelatedWork W1967061043 @default.
- W4293497031 isParatext "false" @default.
- W4293497031 isRetracted "false" @default.
- W4293497031 workType "article" @default.