Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293498872> ?p ?o ?g. }
- W4293498872 endingPage "20" @default.
- W4293498872 startingPage "1" @default.
- W4293498872 abstract "Distributed denial of service (DDoS) attacks are the most common means of cyberattacks against infrastructure, and detection is the first step in combating them. The current DDoS detection mainly uses the improvement or fusion of machine learning and deep learning methods to improve classification performance. However, most classifiers are trained with statistical flow features as input, ignoring topological connection changes. This one-sidedness affects the detection accuracy and cannot provide a basis for the distribution of attack sources for defense deployment. In this study, we propose a topological and flow feature-based deep learning method (GLD-Net), which simultaneously extracts flow and topological features from time-series flow data and exploits graph attention network (GAT) to mine correlations between non-Euclidean features to fuse flow and topological features. The long short-term memory (LSTM) network connected behind GAT obtains the node neighborhood relationship, and the fully connected layer is utilized to achieve feature dimension reduction and traffic type mapping. Experiments on the NSL-KDD2009 and CIC-IDS2017 datasets show that the detection accuracy of the GLD-Net method for two classifications (normal and DDoS flow) and three classifications (normal, fast DDoS flow, and slow DDoS flow) reaches 0.993 and 0.942, respectively. Compared with the existing DDoS attack detection methods, its average improvement is 0.11 and 0.081, respectively. In addition, the correlation coefficient between the detection accuracy of attack flow and the four source distribution indicators ranges from 0.7 to 0.83, which lays a foundation for the inference of attack source distribution. Notably, we are the first to fuse topology and flow features and achieve high-performance DDoS attack intrusion detection through graph-style neural networks. This study has important implications for related research and development of network security systems in other fields." @default.
- W4293498872 created "2022-08-29" @default.
- W4293498872 creator A5006029284 @default.
- W4293498872 creator A5012924900 @default.
- W4293498872 creator A5015855630 @default.
- W4293498872 creator A5055268508 @default.
- W4293498872 creator A5063615379 @default.
- W4293498872 date "2022-08-16" @default.
- W4293498872 modified "2023-10-13" @default.
- W4293498872 title "GLD-Net: Deep Learning to Detect DDoS Attack via Topological and Traffic Feature Fusion" @default.
- W4293498872 cites W2099940443 @default.
- W4293498872 cites W2619799366 @default.
- W4293498872 cites W2768083292 @default.
- W4293498872 cites W2789694608 @default.
- W4293498872 cites W2789828921 @default.
- W4293498872 cites W2799900537 @default.
- W4293498872 cites W2811478201 @default.
- W4293498872 cites W2883690386 @default.
- W4293498872 cites W2885195348 @default.
- W4293498872 cites W2895262238 @default.
- W4293498872 cites W2913166988 @default.
- W4293498872 cites W2921069441 @default.
- W4293498872 cites W2946156428 @default.
- W4293498872 cites W2975221988 @default.
- W4293498872 cites W2982682021 @default.
- W4293498872 cites W2997703816 @default.
- W4293498872 cites W3007238289 @default.
- W4293498872 cites W3010471324 @default.
- W4293498872 cites W3014732532 @default.
- W4293498872 cites W3015773798 @default.
- W4293498872 cites W3021409083 @default.
- W4293498872 cites W3038154406 @default.
- W4293498872 cites W3038469057 @default.
- W4293498872 cites W3047597758 @default.
- W4293498872 cites W3102091066 @default.
- W4293498872 cites W3105750153 @default.
- W4293498872 cites W3108630703 @default.
- W4293498872 cites W3117819143 @default.
- W4293498872 cites W3121972055 @default.
- W4293498872 cites W3137718725 @default.
- W4293498872 cites W3155017772 @default.
- W4293498872 cites W3169649651 @default.
- W4293498872 cites W3172076356 @default.
- W4293498872 cites W3175448228 @default.
- W4293498872 cites W3176886883 @default.
- W4293498872 cites W3181610599 @default.
- W4293498872 cites W3195575042 @default.
- W4293498872 cites W3196792588 @default.
- W4293498872 cites W3209291644 @default.
- W4293498872 cites W3211772915 @default.
- W4293498872 cites W4205195818 @default.
- W4293498872 cites W4210395727 @default.
- W4293498872 cites W4210445337 @default.
- W4293498872 cites W4210773992 @default.
- W4293498872 cites W4210779665 @default.
- W4293498872 cites W4225114726 @default.
- W4293498872 cites W4238294603 @default.
- W4293498872 cites W4285987374 @default.
- W4293498872 cites W4376849086 @default.
- W4293498872 cites W3142095337 @default.
- W4293498872 doi "https://doi.org/10.1155/2022/4611331" @default.
- W4293498872 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36017461" @default.
- W4293498872 hasPublicationYear "2022" @default.
- W4293498872 type Work @default.
- W4293498872 citedByCount "2" @default.
- W4293498872 countsByYear W42934988722023 @default.
- W4293498872 crossrefType "journal-article" @default.
- W4293498872 hasAuthorship W4293498872A5006029284 @default.
- W4293498872 hasAuthorship W4293498872A5012924900 @default.
- W4293498872 hasAuthorship W4293498872A5015855630 @default.
- W4293498872 hasAuthorship W4293498872A5055268508 @default.
- W4293498872 hasAuthorship W4293498872A5063615379 @default.
- W4293498872 hasBestOaLocation W42934988721 @default.
- W4293498872 hasConcept C108583219 @default.
- W4293498872 hasConcept C110875604 @default.
- W4293498872 hasConcept C11413529 @default.
- W4293498872 hasConcept C114614502 @default.
- W4293498872 hasConcept C114809511 @default.
- W4293498872 hasConcept C119857082 @default.
- W4293498872 hasConcept C124101348 @default.
- W4293498872 hasConcept C126255220 @default.
- W4293498872 hasConcept C136764020 @default.
- W4293498872 hasConcept C138885662 @default.
- W4293498872 hasConcept C153180895 @default.
- W4293498872 hasConcept C154945302 @default.
- W4293498872 hasConcept C184720557 @default.
- W4293498872 hasConcept C2776401178 @default.
- W4293498872 hasConcept C33923547 @default.
- W4293498872 hasConcept C38822068 @default.
- W4293498872 hasConcept C41008148 @default.
- W4293498872 hasConcept C41895202 @default.
- W4293498872 hasConceptScore W4293498872C108583219 @default.
- W4293498872 hasConceptScore W4293498872C110875604 @default.
- W4293498872 hasConceptScore W4293498872C11413529 @default.
- W4293498872 hasConceptScore W4293498872C114614502 @default.
- W4293498872 hasConceptScore W4293498872C114809511 @default.
- W4293498872 hasConceptScore W4293498872C119857082 @default.
- W4293498872 hasConceptScore W4293498872C124101348 @default.