Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293498892> ?p ?o ?g. }
- W4293498892 endingPage "124001" @default.
- W4293498892 startingPage "124001" @default.
- W4293498892 abstract "Abstract The presented work addresses the problem of particle detection with neural networks (NNs) in defocusing particle tracking velocimetry. A novel approach based on synthetic training data refinement is introduced, with the scope of revising the well documented performance gap of synthetically trained NNs, applied to experimental recordings. In particular, synthetic particle image (PI) data is enriched with image features from the experimental recordings by means of deep learning through an unsupervised image-to-image translation. It is demonstrated that this refined synthetic training data enables the neural-network-based particle detection for a simultaneous increase in detection rate and reduction in the rate of false positives, beyond the capability of conventional detection algorithms. The potential for an increased accuracy in particle detection is revealed with NNs that utilise small scale image features, which further underlines the importance of representative training data. In addition, it is demonstrated that NNs are able to resolve overlapping PIs with a higher reliability and accuracy in comparison to conventional algorithms, suggesting the possibility of an increased seeding density in real experiments. A further finding is the robustness of NNs to inhomogeneous background illumination and aberration of the images, which opens up defocusing PTV for a wider range of possible applications. The successful application of synthetic training-data refinement advances the neural-network-based particle detection towards real world applicability and suggests the potential of a further performance gain from more suitable training data." @default.
- W4293498892 created "2022-08-29" @default.
- W4293498892 creator A5052771582 @default.
- W4293498892 creator A5055837551 @default.
- W4293498892 creator A5063255997 @default.
- W4293498892 creator A5076368193 @default.
- W4293498892 creator A5081143349 @default.
- W4293498892 creator A5091181208 @default.
- W4293498892 date "2022-09-08" @default.
- W4293498892 modified "2023-10-18" @default.
- W4293498892 title "Particle detection by means of neural networks and synthetic training data refinement in defocusing particle tracking velocimetry" @default.
- W4293498892 cites W1671242952 @default.
- W4293498892 cites W1680797894 @default.
- W4293498892 cites W1856745001 @default.
- W4293498892 cites W1861492603 @default.
- W4293498892 cites W1980287119 @default.
- W4293498892 cites W1984908619 @default.
- W4293498892 cites W1989477602 @default.
- W4293498892 cites W1990540960 @default.
- W4293498892 cites W1992304979 @default.
- W4293498892 cites W2010189128 @default.
- W4293498892 cites W2025768430 @default.
- W4293498892 cites W2031489346 @default.
- W4293498892 cites W2081920360 @default.
- W4293498892 cites W2095442369 @default.
- W4293498892 cites W2112796928 @default.
- W4293498892 cites W2115224468 @default.
- W4293498892 cites W2127684863 @default.
- W4293498892 cites W2149261585 @default.
- W4293498892 cites W2467999310 @default.
- W4293498892 cites W2474389331 @default.
- W4293498892 cites W2565639579 @default.
- W4293498892 cites W2572730214 @default.
- W4293498892 cites W2625219738 @default.
- W4293498892 cites W2884561390 @default.
- W4293498892 cites W2919115771 @default.
- W4293498892 cites W2962793481 @default.
- W4293498892 cites W2963709863 @default.
- W4293498892 cites W2963890275 @default.
- W4293498892 cites W2972006294 @default.
- W4293498892 cites W2973146988 @default.
- W4293498892 cites W3010407922 @default.
- W4293498892 cites W3033219475 @default.
- W4293498892 cites W3099576037 @default.
- W4293498892 cites W3128910462 @default.
- W4293498892 cites W3159890710 @default.
- W4293498892 cites W3163425389 @default.
- W4293498892 cites W607748843 @default.
- W4293498892 cites W639708223 @default.
- W4293498892 doi "https://doi.org/10.1088/1361-6501/ac8a09" @default.
- W4293498892 hasPublicationYear "2022" @default.
- W4293498892 type Work @default.
- W4293498892 citedByCount "4" @default.
- W4293498892 countsByYear W42934988922023 @default.
- W4293498892 crossrefType "journal-article" @default.
- W4293498892 hasAuthorship W4293498892A5052771582 @default.
- W4293498892 hasAuthorship W4293498892A5055837551 @default.
- W4293498892 hasAuthorship W4293498892A5063255997 @default.
- W4293498892 hasAuthorship W4293498892A5076368193 @default.
- W4293498892 hasAuthorship W4293498892A5081143349 @default.
- W4293498892 hasAuthorship W4293498892A5091181208 @default.
- W4293498892 hasBestOaLocation W42934988921 @default.
- W4293498892 hasConcept C104317684 @default.
- W4293498892 hasConcept C121332964 @default.
- W4293498892 hasConcept C153180895 @default.
- W4293498892 hasConcept C154945302 @default.
- W4293498892 hasConcept C15744967 @default.
- W4293498892 hasConcept C159985019 @default.
- W4293498892 hasConcept C160920958 @default.
- W4293498892 hasConcept C177274176 @default.
- W4293498892 hasConcept C185592680 @default.
- W4293498892 hasConcept C192562407 @default.
- W4293498892 hasConcept C19417346 @default.
- W4293498892 hasConcept C196558001 @default.
- W4293498892 hasConcept C204323151 @default.
- W4293498892 hasConcept C207857233 @default.
- W4293498892 hasConcept C2775936607 @default.
- W4293498892 hasConcept C31972630 @default.
- W4293498892 hasConcept C41008148 @default.
- W4293498892 hasConcept C50644808 @default.
- W4293498892 hasConcept C55493867 @default.
- W4293498892 hasConcept C63479239 @default.
- W4293498892 hasConcept C64869954 @default.
- W4293498892 hasConcept C97355855 @default.
- W4293498892 hasConceptScore W4293498892C104317684 @default.
- W4293498892 hasConceptScore W4293498892C121332964 @default.
- W4293498892 hasConceptScore W4293498892C153180895 @default.
- W4293498892 hasConceptScore W4293498892C154945302 @default.
- W4293498892 hasConceptScore W4293498892C15744967 @default.
- W4293498892 hasConceptScore W4293498892C159985019 @default.
- W4293498892 hasConceptScore W4293498892C160920958 @default.
- W4293498892 hasConceptScore W4293498892C177274176 @default.
- W4293498892 hasConceptScore W4293498892C185592680 @default.
- W4293498892 hasConceptScore W4293498892C192562407 @default.
- W4293498892 hasConceptScore W4293498892C19417346 @default.
- W4293498892 hasConceptScore W4293498892C196558001 @default.
- W4293498892 hasConceptScore W4293498892C204323151 @default.
- W4293498892 hasConceptScore W4293498892C207857233 @default.