Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293511029> ?p ?o ?g. }
- W4293511029 abstract "Objectives: This study firstly aimed to explore predicting cognitive impairment at an early stage using a large population-based longitudinal survey of elderly Chinese people. The second aim was to identify reversible factors which may help slow the rate of decline in cognitive function over 3 years in the community. Methods: We included 12,280 elderly people from four waves of the Chinese Longitudinal Healthy Longevity Survey (CLHLS), followed from 2002 to 2014. The Chinese version of the Mini-Mental State Examination (MMSE) was used to examine cognitive function. Six machine learning algorithms (including a neural network model) and an ensemble method were trained on data split 2/3 for training and 1/3 testing. Parameters were explored in training data using 3-fold cross-validation and models were evaluated in test data. The model performance was measured by area-under-curve (AUC), sensitivity, and specificity. In addition, due to its better interpretability, logistic regression (LR) was used to assess the association of life behavior and its change with cognitive impairment after 3 years. Results: Support vector machine and multi-layer perceptron were found to be the best performing algorithms with AUC of 0.8267 and 0.8256, respectively. Fusing the results of all six single models further improves the AUC to 0.8269. Playing more Mahjong or cards (OR = 0.49,95% CI: 0.38–0.64), doing more garden works (OR = 0.54,95% CI: 0.43–0.68), watching TV or listening to the radio more (OR = 0.67,95% CI: 0.59–0.77) were associated with decreased risk of cognitive impairment after 3 years. Conclusions: Machine learning algorithms especially the SVM, and the ensemble model can be leveraged to identify the elderly at risk of cognitive impairment. Doing more leisure activities, doing more gardening work, and engaging in more activities combined were associated with decreased risk of cognitive impairment." @default.
- W4293511029 created "2022-08-30" @default.
- W4293511029 creator A5003642180 @default.
- W4293511029 creator A5005034519 @default.
- W4293511029 creator A5005379673 @default.
- W4293511029 creator A5032632635 @default.
- W4293511029 creator A5033260513 @default.
- W4293511029 creator A5033708676 @default.
- W4293511029 creator A5041586518 @default.
- W4293511029 creator A5045933784 @default.
- W4293511029 creator A5046483516 @default.
- W4293511029 creator A5057903850 @default.
- W4293511029 creator A5059804502 @default.
- W4293511029 creator A5060593062 @default.
- W4293511029 creator A5068246417 @default.
- W4293511029 date "2022-08-11" @default.
- W4293511029 modified "2023-10-14" @default.
- W4293511029 title "Using machine learning algorithms for predicting cognitive impairment and identifying modifiable factors among Chinese elderly people" @default.
- W4293511029 cites W1517118877 @default.
- W4293511029 cites W1909382052 @default.
- W4293511029 cites W1966529142 @default.
- W4293511029 cites W1969673584 @default.
- W4293511029 cites W2034664059 @default.
- W4293511029 cites W2037006787 @default.
- W4293511029 cites W2050252514 @default.
- W4293511029 cites W2053161624 @default.
- W4293511029 cites W2097033739 @default.
- W4293511029 cites W2107658105 @default.
- W4293511029 cites W2128340292 @default.
- W4293511029 cites W2144907160 @default.
- W4293511029 cites W2149575392 @default.
- W4293511029 cites W2158401065 @default.
- W4293511029 cites W2277604136 @default.
- W4293511029 cites W2358110852 @default.
- W4293511029 cites W2412960638 @default.
- W4293511029 cites W2599985111 @default.
- W4293511029 cites W2770214400 @default.
- W4293511029 cites W2896896725 @default.
- W4293511029 cites W2898543815 @default.
- W4293511029 cites W2918838257 @default.
- W4293511029 cites W2927171894 @default.
- W4293511029 cites W2937058031 @default.
- W4293511029 cites W2938433516 @default.
- W4293511029 cites W2940351461 @default.
- W4293511029 cites W2958008693 @default.
- W4293511029 cites W2961148372 @default.
- W4293511029 cites W2962974300 @default.
- W4293511029 cites W2966946593 @default.
- W4293511029 cites W2972735012 @default.
- W4293511029 cites W2978378060 @default.
- W4293511029 cites W3006672773 @default.
- W4293511029 cites W3013454990 @default.
- W4293511029 cites W3023013291 @default.
- W4293511029 cites W3033672859 @default.
- W4293511029 cites W3081769961 @default.
- W4293511029 cites W3090927654 @default.
- W4293511029 cites W3093704627 @default.
- W4293511029 cites W3095591680 @default.
- W4293511029 cites W3122621381 @default.
- W4293511029 cites W3129233394 @default.
- W4293511029 cites W3132035595 @default.
- W4293511029 cites W3139310894 @default.
- W4293511029 cites W3164041987 @default.
- W4293511029 cites W3213372970 @default.
- W4293511029 cites W4226207151 @default.
- W4293511029 cites W4226365889 @default.
- W4293511029 doi "https://doi.org/10.3389/fnagi.2022.977034" @default.
- W4293511029 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36034140" @default.
- W4293511029 hasPublicationYear "2022" @default.
- W4293511029 type Work @default.
- W4293511029 citedByCount "2" @default.
- W4293511029 countsByYear W42935110292023 @default.
- W4293511029 crossrefType "journal-article" @default.
- W4293511029 hasAuthorship W4293511029A5003642180 @default.
- W4293511029 hasAuthorship W4293511029A5005034519 @default.
- W4293511029 hasAuthorship W4293511029A5005379673 @default.
- W4293511029 hasAuthorship W4293511029A5032632635 @default.
- W4293511029 hasAuthorship W4293511029A5033260513 @default.
- W4293511029 hasAuthorship W4293511029A5033708676 @default.
- W4293511029 hasAuthorship W4293511029A5041586518 @default.
- W4293511029 hasAuthorship W4293511029A5045933784 @default.
- W4293511029 hasAuthorship W4293511029A5046483516 @default.
- W4293511029 hasAuthorship W4293511029A5057903850 @default.
- W4293511029 hasAuthorship W4293511029A5059804502 @default.
- W4293511029 hasAuthorship W4293511029A5060593062 @default.
- W4293511029 hasAuthorship W4293511029A5068246417 @default.
- W4293511029 hasBestOaLocation W42935110291 @default.
- W4293511029 hasConcept C11413529 @default.
- W4293511029 hasConcept C118552586 @default.
- W4293511029 hasConcept C119857082 @default.
- W4293511029 hasConcept C12267149 @default.
- W4293511029 hasConcept C151956035 @default.
- W4293511029 hasConcept C154945302 @default.
- W4293511029 hasConcept C15744967 @default.
- W4293511029 hasConcept C169900460 @default.
- W4293511029 hasConcept C179717631 @default.
- W4293511029 hasConcept C2781067378 @default.
- W4293511029 hasConcept C41008148 @default.
- W4293511029 hasConcept C50644808 @default.
- W4293511029 hasConcept C60908668 @default.